Dominated convergence theorem - what sequence? The Next CEO of Stack OverflowWhat are some good integration problems where you can use some of the function convergence theorem of Lesbegue integrals?Find Limit Using Lebesgue Dominated ConvergenceSolving these types of integrals, using Monotone convergence theorem and Dominated convergence theorem.Applications of Dominated/Monotone convergence theoremLebesgue Dominated Convergence Theorem exampleDominated convergence theorem for log-integrable rational functionsuniform or dominated convergence of sequence of functions which are boundedBartle's proof of Lebesgue Dominated Convergence TheoremCalculate the limit using dominated or monotone convergence theoremUsing dominated convergence theorem to move limit inside the integral

Method for adding error messages to a dictionary given a key

What did we know about the Kessel run before the prequels?

Won the lottery - how do I keep the money?

Legal workarounds for testamentary trust perceived as unfair

Why is information "lost" when it got into a black hole?

Is it ever safe to open a suspicious HTML file (e.g. email attachment)?

How to edit “Name” property in GCI output?

Why doesn't UK go for the same deal Japan has with EU to resolve Brexit?

TikZ: How to reverse arrow direction without switching start/end point?

When you upcast Blindness/Deafness, do all targets suffer the same effect?

Find non-case sensitive string in a mixed list of elements?

Dominated convergence theorem - what sequence?

Which one is the true statement?

Bartok - Syncopation (1): Meaning of notes in between Grand Staff

Proper way to express "He disappeared them"

Is it professional to write unrelated content in an almost-empty email?

How to count occurrences of text in a file?

How to avoid supervisors with prejudiced views?

The past simple of "gaslight" – "gaslighted" or "gaslit"?

How to get from Geneva Airport to Metabief, Doubs, France by public transport?

Recycling old answers

What does "Its cash flow is deeply negative" mean?

Easy to read palindrome checker

Why do airplanes bank sharply to the right after air-to-air refueling?



Dominated convergence theorem - what sequence?



The Next CEO of Stack OverflowWhat are some good integration problems where you can use some of the function convergence theorem of Lesbegue integrals?Find Limit Using Lebesgue Dominated ConvergenceSolving these types of integrals, using Monotone convergence theorem and Dominated convergence theorem.Applications of Dominated/Monotone convergence theoremLebesgue Dominated Convergence Theorem exampleDominated convergence theorem for log-integrable rational functionsuniform or dominated convergence of sequence of functions which are boundedBartle's proof of Lebesgue Dominated Convergence TheoremCalculate the limit using dominated or monotone convergence theoremUsing dominated convergence theorem to move limit inside the integral










3












$begingroup$


Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
$$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










share|cite|improve this question









$endgroup$
















    3












    $begingroup$


    Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
    $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
    Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



    P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










    share|cite|improve this question









    $endgroup$














      3












      3








      3





      $begingroup$


      Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
      $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
      Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



      P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!










      share|cite|improve this question









      $endgroup$




      Simple question. When are we allowed to exchange limits and integrals? I'm talking about situations like
      $$lim_varepsilonto0^+ int_-infty^infty dk f(k,varepsilon) overset?= int_-infty^infty dklim_varepsilonto0^+ f(k,varepsilon).$$
      Everyone refers to either dominated convergence theorem or monotone convergence theorem but I'm not sure if I understand how exactly one should go about applying it. Both theorems are about sequences and I don't see how that relates to integration in practice. Help a physicist out :)



      P.S. Before someone marks it as a duplicate, please take a minute to understand (not saying that you won't) what it is that I'm asking here. Thank you!







      integration limits






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 9 hours ago









      Ivan V.Ivan V.

      981216




      981216




















          2 Answers
          2






          active

          oldest

          votes


















          4












          $begingroup$

          The statement of the dominated convergence theorem (DCT) is as follows:




          "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
          $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




          (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



          As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




          Proposition. If $f$ is a function, then
          $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




          With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




          "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
          $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




          The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
            $endgroup$
            – Ivan V.
            6 hours ago










          • $begingroup$
            @IvanV.: Yes, that's correct!
            $endgroup$
            – Alex Ortiz
            5 hours ago










          • $begingroup$
            Alright, thank you, much appreciated!
            $endgroup$
            – Ivan V.
            4 hours ago


















          3












          $begingroup$

          Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



          This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



          And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






          share|cite|improve this answer









          $endgroup$













            Your Answer





            StackExchange.ifUsing("editor", function ()
            return StackExchange.using("mathjaxEditing", function ()
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            );
            );
            , "mathjax-editing");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168778%2fdominated-convergence-theorem-what-sequence%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            4












            $begingroup$

            The statement of the dominated convergence theorem (DCT) is as follows:




            "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
            $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




            (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



            As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




            Proposition. If $f$ is a function, then
            $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




            With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




            "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
            $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




            The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
              $endgroup$
              – Ivan V.
              6 hours ago










            • $begingroup$
              @IvanV.: Yes, that's correct!
              $endgroup$
              – Alex Ortiz
              5 hours ago










            • $begingroup$
              Alright, thank you, much appreciated!
              $endgroup$
              – Ivan V.
              4 hours ago















            4












            $begingroup$

            The statement of the dominated convergence theorem (DCT) is as follows:




            "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
            $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




            (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



            As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




            Proposition. If $f$ is a function, then
            $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




            With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




            "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
            $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




            The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
              $endgroup$
              – Ivan V.
              6 hours ago










            • $begingroup$
              @IvanV.: Yes, that's correct!
              $endgroup$
              – Alex Ortiz
              5 hours ago










            • $begingroup$
              Alright, thank you, much appreciated!
              $endgroup$
              – Ivan V.
              4 hours ago













            4












            4








            4





            $begingroup$

            The statement of the dominated convergence theorem (DCT) is as follows:




            "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
            $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




            (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



            As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




            Proposition. If $f$ is a function, then
            $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




            With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




            "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
            $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




            The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.






            share|cite|improve this answer











            $endgroup$



            The statement of the dominated convergence theorem (DCT) is as follows:




            "Discrete" DCT. Suppose $f_n_n=1^infty$ is a sequence of (measurable) functions such that $|f_n| le g$ for some integrable function $g$ and all $n$, and $lim_ntoinftyf_n = f$ pointwise almost everywhere. Then, $f$ is an integrable function and $int |f-f_n| to 0$. In particular, $lim_ntoinftyint f_n = int f$ (by the triangle inequality). This can be written as
            $$ lim_ntoinftyint f_n = int lim_ntoinfty f_n.$$




            (The statement and conclusion of the monotone convergence theorem are similar, but it has a somewhat different set of hypotheses.)



            As you note, the statements of these theorems involve sequences of functions, i.e., a $1$-discrete-parameter family of functions $f_n_n=1^infty$. To apply these theorems to a $1$-continuous-parameter family of functions, say $f_epsilon_0<epsilon<epsilon_0$, one typically uses a characterization of limits involving a continuous parameter in terms of sequences:




            Proposition. If $f$ is a function, then
            $$lim_epsilonto0^+f(epsilon) = L iff lim_ntoinftyf(a_n) = Lquad textfor $mathbfall$ sequences $a_nto 0^+$.$$




            With this characterization, we can formulate a version of the dominated convergence theorem involving continuous-parameter families of functions (note that I use quotations to title these versions of the DCT because these names are not standard as far as I know):




            "Continuous" DCT. Suppose $f_epsilon_0<epsilon<epsilon_0$ is a $1$-continuous-parameter family of (measurable) functions such that $|f_epsilon| le g$ for some integrable function $g$ and all $0<epsilon<epsilon_0$, and $lim_epsilonto0^+f_epsilon=f$ pointwise almost everywhere. Then, $f$ is an integrable function and $lim_epsilonto 0^+int f_epsilon = int f$. This can be written as
            $$ lim_epsilonto0^+int f_epsilon = int lim_epsilonto0^+ f_epsilon.$$




            The way we use the continuous DCT in practice is by picking an arbitrary sequence $pmba_nto 0^+$ and showing that the hypotheses of the "discrete" DCT are satisfied for this arbitrary sequence $a_n$, using only the assumption that $a_nto 0^+$ and properties of the family $f_epsilon$ that are known to us.







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 8 hours ago

























            answered 8 hours ago









            Alex OrtizAlex Ortiz

            11.3k21441




            11.3k21441











            • $begingroup$
              Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
              $endgroup$
              – Ivan V.
              6 hours ago










            • $begingroup$
              @IvanV.: Yes, that's correct!
              $endgroup$
              – Alex Ortiz
              5 hours ago










            • $begingroup$
              Alright, thank you, much appreciated!
              $endgroup$
              – Ivan V.
              4 hours ago
















            • $begingroup$
              Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
              $endgroup$
              – Ivan V.
              6 hours ago










            • $begingroup$
              @IvanV.: Yes, that's correct!
              $endgroup$
              – Alex Ortiz
              5 hours ago










            • $begingroup$
              Alright, thank you, much appreciated!
              $endgroup$
              – Ivan V.
              4 hours ago















            $begingroup$
            Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
            $endgroup$
            – Ivan V.
            6 hours ago




            $begingroup$
            Let's see if I understood this correctly, using the more specific problem I mentioned in the question. First, I find some integrable function $g$ s.t. $|f(k,varepsilon)| leq g(k), forall k inmathbbR$ and all $varepsilon$ between $0$ and some positive $varepsilon_0$. Then I check if $f(k,varepsilon) to f(k,0)$ for all $k$ except perhaps on a set of measure zero. If it does, I can exchange the limit and the integral. If not, I can't. Did I get everything right?
            $endgroup$
            – Ivan V.
            6 hours ago












            $begingroup$
            @IvanV.: Yes, that's correct!
            $endgroup$
            – Alex Ortiz
            5 hours ago




            $begingroup$
            @IvanV.: Yes, that's correct!
            $endgroup$
            – Alex Ortiz
            5 hours ago












            $begingroup$
            Alright, thank you, much appreciated!
            $endgroup$
            – Ivan V.
            4 hours ago




            $begingroup$
            Alright, thank you, much appreciated!
            $endgroup$
            – Ivan V.
            4 hours ago











            3












            $begingroup$

            Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



            This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



            And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



              This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



              And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



                This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



                And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.






                share|cite|improve this answer









                $endgroup$



                Let's look at it in a silly case. We want to prove by DCT that $$lim_varepsilonto0^+ int_0^infty e^-y/varepsilon,dy=0$$



                This is the case if and only if for all sequence $varepsilon_nto 0^+$ it holds $$lim_ntoinftyint_0^infty e^-y/varepsilon_n,dy=0$$



                And now you can use DCT on each of these sequences. Of course, the limiting function will always be the zero function and you may consider the dominating function $e^-x$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 8 hours ago









                Saucy O'PathSaucy O'Path

                6,2241627




                6,2241627



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3168778%2fdominated-convergence-theorem-what-sequence%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Log på Navigationsmenu

                    Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                    Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5