If u is orthogonal to both v and w, and u not equal to 0, argue that u is not in the span of v and w. ( Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Orthogonal projection on span $x$Prove the orthogonal complement is equal to the orthogonal complement of the Span.Linear Independence and “Not in the Span”Incomplete Gauss Jordan elimination: what have I left outConsider the following system and find the values of b for which the system has a solutionDifference between Augmented Method and Gauss Jordan elimination?General form of a matrix that is both centrosymmetric and orthogonalPivots and singular cases in Gaussian EliminationOrthogonal projection on SpanFor what values of k does this system of equations have a unique / infinite / no solutions?

2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?

Do wooden building fires get hotter than 600°C?

How does the math work when buying airline miles?

What is homebrew?

How to answer "Have you ever been terminated?"

What is the meaning of the new sigil in Game of Thrones Season 8 intro?

If a VARCHAR(MAX) column is included in an index, is the entire value always stored in the index page(s)?

What does "lightly crushed" mean for cardamon pods?

Dating a Former Employee

Trademark violation for app?

What is implied by the word 'Desika'

Fantasy story; one type of magic grows in power with use, but the more powerful they are, they more they are drawn to travel to their source

How to tell that you are a giant?

Why are there no cargo aircraft with "flying wing" design?

Around usage results

How do I make this wiring inside cabinet safer? (Pic)

How come Sam didn't become Lord of Horn Hill?

Do jazz musicians improvise on the parent scale in addition to the chord-scales?

また usage in a dictionary

When a candle burns, why does the top of wick glow if bottom of flame is hottest?

How could we fake a moon landing now?

How would a mousetrap for use in space work?

Using audio cues to encourage good posture

Is CEO the profession with the most psychopaths?



If u is orthogonal to both v and w, and u not equal to 0, argue that u is not in the span of v and w. (



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Orthogonal projection on span $x$Prove the orthogonal complement is equal to the orthogonal complement of the Span.Linear Independence and “Not in the Span”Incomplete Gauss Jordan elimination: what have I left outConsider the following system and find the values of b for which the system has a solutionDifference between Augmented Method and Gauss Jordan elimination?General form of a matrix that is both centrosymmetric and orthogonalPivots and singular cases in Gaussian EliminationOrthogonal projection on SpanFor what values of k does this system of equations have a unique / infinite / no solutions?










1












$begingroup$


QN: If u is orthogonal to both v and w, and u ≠ 0, argue that u is not in the span of v and w.



Where I am at:
enter image description here



I get stuck when it comes to solving my augmented matrix with Gauss Jordan Elimination.



I also tried formulating the following steps to solve the problem.



  1. Create instances of u, v and w that pertain to the question. My visualisation in Geogebra can be viewed here: https://ggbm.at/b6xvwhpa


  2. Set u = av + bw = u (where a and b are constants)


  3. Disprove (2)

However, I could not get past step 1.



Any pointers would be greatly appreciated.










share|cite|improve this question









New contributor




Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$
















    1












    $begingroup$


    QN: If u is orthogonal to both v and w, and u ≠ 0, argue that u is not in the span of v and w.



    Where I am at:
    enter image description here



    I get stuck when it comes to solving my augmented matrix with Gauss Jordan Elimination.



    I also tried formulating the following steps to solve the problem.



    1. Create instances of u, v and w that pertain to the question. My visualisation in Geogebra can be viewed here: https://ggbm.at/b6xvwhpa


    2. Set u = av + bw = u (where a and b are constants)


    3. Disprove (2)

    However, I could not get past step 1.



    Any pointers would be greatly appreciated.










    share|cite|improve this question









    New contributor




    Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$














      1












      1








      1





      $begingroup$


      QN: If u is orthogonal to both v and w, and u ≠ 0, argue that u is not in the span of v and w.



      Where I am at:
      enter image description here



      I get stuck when it comes to solving my augmented matrix with Gauss Jordan Elimination.



      I also tried formulating the following steps to solve the problem.



      1. Create instances of u, v and w that pertain to the question. My visualisation in Geogebra can be viewed here: https://ggbm.at/b6xvwhpa


      2. Set u = av + bw = u (where a and b are constants)


      3. Disprove (2)

      However, I could not get past step 1.



      Any pointers would be greatly appreciated.










      share|cite|improve this question









      New contributor




      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      QN: If u is orthogonal to both v and w, and u ≠ 0, argue that u is not in the span of v and w.



      Where I am at:
      enter image description here



      I get stuck when it comes to solving my augmented matrix with Gauss Jordan Elimination.



      I also tried formulating the following steps to solve the problem.



      1. Create instances of u, v and w that pertain to the question. My visualisation in Geogebra can be viewed here: https://ggbm.at/b6xvwhpa


      2. Set u = av + bw = u (where a and b are constants)


      3. Disprove (2)

      However, I could not get past step 1.



      Any pointers would be greatly appreciated.







      linear-algebra matrices






      share|cite|improve this question









      New contributor




      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question









      New contributor




      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question








      edited 11 mins ago









      YuiTo Cheng

      2,52341037




      2,52341037






      New contributor




      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 23 mins ago









      Dimen3ionalDimen3ional

      82




      82




      New contributor




      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Dimen3ional is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$

          $defmyvec#1bf#1$
          This is the same as saying




          if $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, and $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=myvec 0$.




          So, if $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=amyvec v+bmyvec w$ for some scalars $a,b$. Assuming also $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, this means $myvec ucdot myvec v=0$ and $myvec ucdotmyvec w=0$, so
          $$myvec ucdot myvec u=myvec ucdot(amyvec v+bmyvec w)=a(myvec ucdot myvec v)+b(myvec ucdot myvec w)=a0+b0=0 .$$
          Since $myvec ucdot myvec u=0$ we have $myvec u=myvec 0$.






          share|cite|improve this answer









          $endgroup$












          • $begingroup$
            I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
            $endgroup$
            – Dimen3ional
            8 mins ago










          • $begingroup$
            Have you studied proof by contradiction or by contrapositive? That's what this is.
            $endgroup$
            – David
            7 mins ago



















          2












          $begingroup$

          If $u$ belongs to the span of $v$ and $w$ the $u=av+bw$ for some scalars $a$ and $b$. Since $langle u, v rangle=0$ and $langle u, w rangle=0$ we get $langle u, (av+bw) rangle=0$ so $langle u, u rangle=0$. This means $u=0$ which is a contradiction.






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );






            Dimen3ional is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3192025%2fif-u-is-orthogonal-to-both-v-and-w-and-u-not-equal-to-0-argue-that-u-is-not-in%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$

            $defmyvec#1bf#1$
            This is the same as saying




            if $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, and $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=myvec 0$.




            So, if $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=amyvec v+bmyvec w$ for some scalars $a,b$. Assuming also $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, this means $myvec ucdot myvec v=0$ and $myvec ucdotmyvec w=0$, so
            $$myvec ucdot myvec u=myvec ucdot(amyvec v+bmyvec w)=a(myvec ucdot myvec v)+b(myvec ucdot myvec w)=a0+b0=0 .$$
            Since $myvec ucdot myvec u=0$ we have $myvec u=myvec 0$.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
              $endgroup$
              – Dimen3ional
              8 mins ago










            • $begingroup$
              Have you studied proof by contradiction or by contrapositive? That's what this is.
              $endgroup$
              – David
              7 mins ago
















            2












            $begingroup$

            $defmyvec#1bf#1$
            This is the same as saying




            if $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, and $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=myvec 0$.




            So, if $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=amyvec v+bmyvec w$ for some scalars $a,b$. Assuming also $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, this means $myvec ucdot myvec v=0$ and $myvec ucdotmyvec w=0$, so
            $$myvec ucdot myvec u=myvec ucdot(amyvec v+bmyvec w)=a(myvec ucdot myvec v)+b(myvec ucdot myvec w)=a0+b0=0 .$$
            Since $myvec ucdot myvec u=0$ we have $myvec u=myvec 0$.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
              $endgroup$
              – Dimen3ional
              8 mins ago










            • $begingroup$
              Have you studied proof by contradiction or by contrapositive? That's what this is.
              $endgroup$
              – David
              7 mins ago














            2












            2








            2





            $begingroup$

            $defmyvec#1bf#1$
            This is the same as saying




            if $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, and $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=myvec 0$.




            So, if $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=amyvec v+bmyvec w$ for some scalars $a,b$. Assuming also $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, this means $myvec ucdot myvec v=0$ and $myvec ucdotmyvec w=0$, so
            $$myvec ucdot myvec u=myvec ucdot(amyvec v+bmyvec w)=a(myvec ucdot myvec v)+b(myvec ucdot myvec w)=a0+b0=0 .$$
            Since $myvec ucdot myvec u=0$ we have $myvec u=myvec 0$.






            share|cite|improve this answer









            $endgroup$



            $defmyvec#1bf#1$
            This is the same as saying




            if $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, and $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=myvec 0$.




            So, if $myvec u$ is in the span of $myvec v$ and $myvec w$, then $myvec u=amyvec v+bmyvec w$ for some scalars $a,b$. Assuming also $myvec u$ is orthogonal to both $myvec v$ and $myvec w$, this means $myvec ucdot myvec v=0$ and $myvec ucdotmyvec w=0$, so
            $$myvec ucdot myvec u=myvec ucdot(amyvec v+bmyvec w)=a(myvec ucdot myvec v)+b(myvec ucdot myvec w)=a0+b0=0 .$$
            Since $myvec ucdot myvec u=0$ we have $myvec u=myvec 0$.







            share|cite|improve this answer












            share|cite|improve this answer



            share|cite|improve this answer










            answered 15 mins ago









            DavidDavid

            70.1k668131




            70.1k668131











            • $begingroup$
              I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
              $endgroup$
              – Dimen3ional
              8 mins ago










            • $begingroup$
              Have you studied proof by contradiction or by contrapositive? That's what this is.
              $endgroup$
              – David
              7 mins ago

















            • $begingroup$
              I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
              $endgroup$
              – Dimen3ional
              8 mins ago










            • $begingroup$
              Have you studied proof by contradiction or by contrapositive? That's what this is.
              $endgroup$
              – David
              7 mins ago
















            $begingroup$
            I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
            $endgroup$
            – Dimen3ional
            8 mins ago




            $begingroup$
            I thought about this, however, the question specifically states that u can not be zero. If u can't be zero does that not prevent the above proof, or am I looking at this the wrong way?
            $endgroup$
            – Dimen3ional
            8 mins ago












            $begingroup$
            Have you studied proof by contradiction or by contrapositive? That's what this is.
            $endgroup$
            – David
            7 mins ago





            $begingroup$
            Have you studied proof by contradiction or by contrapositive? That's what this is.
            $endgroup$
            – David
            7 mins ago












            2












            $begingroup$

            If $u$ belongs to the span of $v$ and $w$ the $u=av+bw$ for some scalars $a$ and $b$. Since $langle u, v rangle=0$ and $langle u, w rangle=0$ we get $langle u, (av+bw) rangle=0$ so $langle u, u rangle=0$. This means $u=0$ which is a contradiction.






            share|cite|improve this answer









            $endgroup$

















              2












              $begingroup$

              If $u$ belongs to the span of $v$ and $w$ the $u=av+bw$ for some scalars $a$ and $b$. Since $langle u, v rangle=0$ and $langle u, w rangle=0$ we get $langle u, (av+bw) rangle=0$ so $langle u, u rangle=0$. This means $u=0$ which is a contradiction.






              share|cite|improve this answer









              $endgroup$















                2












                2








                2





                $begingroup$

                If $u$ belongs to the span of $v$ and $w$ the $u=av+bw$ for some scalars $a$ and $b$. Since $langle u, v rangle=0$ and $langle u, w rangle=0$ we get $langle u, (av+bw) rangle=0$ so $langle u, u rangle=0$. This means $u=0$ which is a contradiction.






                share|cite|improve this answer









                $endgroup$



                If $u$ belongs to the span of $v$ and $w$ the $u=av+bw$ for some scalars $a$ and $b$. Since $langle u, v rangle=0$ and $langle u, w rangle=0$ we get $langle u, (av+bw) rangle=0$ so $langle u, u rangle=0$. This means $u=0$ which is a contradiction.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 14 mins ago









                Kavi Rama MurthyKavi Rama Murthy

                75.5k53270




                75.5k53270




















                    Dimen3ional is a new contributor. Be nice, and check out our Code of Conduct.









                    draft saved

                    draft discarded


















                    Dimen3ional is a new contributor. Be nice, and check out our Code of Conduct.












                    Dimen3ional is a new contributor. Be nice, and check out our Code of Conduct.











                    Dimen3ional is a new contributor. Be nice, and check out our Code of Conduct.














                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3192025%2fif-u-is-orthogonal-to-both-v-and-w-and-u-not-equal-to-0-argue-that-u-is-not-in%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Log på Navigationsmenu

                    Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                    Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5