Understanding Ceva's Theorem Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Ratio of areas of similar triangles given SSHow to calculate Fermat point in a triangle most efficiently?Prove this is a rectangleThe formula for the area of two triangles determined by the diagonals of a trapezoidUSAMO 2005, Problem3 (Triangle Geometry)- Is my solution correct?Corresponding side in similar trianglesMake isosceles triangle with matchsticksCutting a Triangle Through Its CentroidSimilar triangles and cross section integrals.Postulate or Theorem: The areas of similar plane figures are proportional their linear dimensions squared?

The logistics of corpse disposal

51k Euros annually for a family of 4 in Berlin: Is it enough?

How does the particle を relate to the verb 行く in the structure「A を + B に行く」?

2001: A Space Odyssey's use of the song "Daisy Bell" (Bicycle Built for Two); life imitates art or vice-versa?

String `!23` is replaced with `docker` in command line

How do I keep my slimes from escaping their pens?

Storing hydrofluoric acid before the invention of plastics

Ring Automorphisms that fix 1.

What's the purpose of writing one's academic biography in the third person?

Why didn't this character "real die" when they blew their stack out in Altered Carbon?

Can a non-EU citizen traveling with me come with me through the EU passport line?

What is known about the Ubaid lizard-people figurines?

What is Arya's weapon design?

Why is my conclusion inconsistent with the van't Hoff equation?

How to call a function with default parameter through a pointer to function that is the return of another function?

Understanding Ceva's Theorem

Do I really need recursive chmod to restrict access to a folder?

3 doors, three guards, one stone

How to react to hostile behavior from a senior developer?

When were vectors invented?

Short Story with Cinderella as a Voo-doo Witch

What is a non-alternating simple group with big order, but relatively few conjugacy classes?

What would be the ideal power source for a cybernetic eye?

When do you get frequent flier miles - when you buy, or when you fly?



Understanding Ceva's Theorem



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Ratio of areas of similar triangles given SSHow to calculate Fermat point in a triangle most efficiently?Prove this is a rectangleThe formula for the area of two triangles determined by the diagonals of a trapezoidUSAMO 2005, Problem3 (Triangle Geometry)- Is my solution correct?Corresponding side in similar trianglesMake isosceles triangle with matchsticksCutting a Triangle Through Its CentroidSimilar triangles and cross section integrals.Postulate or Theorem: The areas of similar plane figures are proportional their linear dimensions squared?










5












$begingroup$


enter image description here



In Ceva's Theorem, I understand that $fracA_triangle PXBA_triangle PXC=fracBXCX=fracA_triangle BXAA_triangle CXA$.



I would like clarification in understanding the following step which states:



$fracA_triangle APBA_triangle APC=fracA_triangle AXB - A_triangle PXBA_triangle AXC-A_triangle PXC=fracBXCX$



How does the subtraction of the two areas make it so that the new triangles are still proportional to $fracBXCX$? (even though they do not share those sides!)










share|cite|improve this question











$endgroup$
















    5












    $begingroup$


    enter image description here



    In Ceva's Theorem, I understand that $fracA_triangle PXBA_triangle PXC=fracBXCX=fracA_triangle BXAA_triangle CXA$.



    I would like clarification in understanding the following step which states:



    $fracA_triangle APBA_triangle APC=fracA_triangle AXB - A_triangle PXBA_triangle AXC-A_triangle PXC=fracBXCX$



    How does the subtraction of the two areas make it so that the new triangles are still proportional to $fracBXCX$? (even though they do not share those sides!)










    share|cite|improve this question











    $endgroup$














      5












      5








      5


      1



      $begingroup$


      enter image description here



      In Ceva's Theorem, I understand that $fracA_triangle PXBA_triangle PXC=fracBXCX=fracA_triangle BXAA_triangle CXA$.



      I would like clarification in understanding the following step which states:



      $fracA_triangle APBA_triangle APC=fracA_triangle AXB - A_triangle PXBA_triangle AXC-A_triangle PXC=fracBXCX$



      How does the subtraction of the two areas make it so that the new triangles are still proportional to $fracBXCX$? (even though they do not share those sides!)










      share|cite|improve this question











      $endgroup$




      enter image description here



      In Ceva's Theorem, I understand that $fracA_triangle PXBA_triangle PXC=fracBXCX=fracA_triangle BXAA_triangle CXA$.



      I would like clarification in understanding the following step which states:



      $fracA_triangle APBA_triangle APC=fracA_triangle AXB - A_triangle PXBA_triangle AXC-A_triangle PXC=fracBXCX$



      How does the subtraction of the two areas make it so that the new triangles are still proportional to $fracBXCX$? (even though they do not share those sides!)







      geometry proof-verification triangles






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 2 hours ago









      YuiTo Cheng

      2,48341037




      2,48341037










      asked 2 hours ago









      dragonkingdragonking

      384




      384




















          1 Answer
          1






          active

          oldest

          votes


















          3












          $begingroup$

          $A_triangle AXB: A_triangle AXC=BX:CXRightarrow A_triangle AXB=fracBXCXA_triangle AXC$



          $A_triangle PXB: A_triangle PXC=BX:CXRightarrow A_triangle PXB=fracBXCXA_triangle PXC$



          Hence $$fracA_triangle A X B -A _triangle P X BA _triangle A X C-A_ triangle P X C=fracfracBXCXA_triangle AXC-fracBXCXA_triangle PXCA _triangle A X C-A_ triangle P X C=fracBXCX$$






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190589%2funderstanding-cevas-theorem%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            3












            $begingroup$

            $A_triangle AXB: A_triangle AXC=BX:CXRightarrow A_triangle AXB=fracBXCXA_triangle AXC$



            $A_triangle PXB: A_triangle PXC=BX:CXRightarrow A_triangle PXB=fracBXCXA_triangle PXC$



            Hence $$fracA_triangle A X B -A _triangle P X BA _triangle A X C-A_ triangle P X C=fracfracBXCXA_triangle AXC-fracBXCXA_triangle PXCA _triangle A X C-A_ triangle P X C=fracBXCX$$






            share|cite|improve this answer









            $endgroup$

















              3












              $begingroup$

              $A_triangle AXB: A_triangle AXC=BX:CXRightarrow A_triangle AXB=fracBXCXA_triangle AXC$



              $A_triangle PXB: A_triangle PXC=BX:CXRightarrow A_triangle PXB=fracBXCXA_triangle PXC$



              Hence $$fracA_triangle A X B -A _triangle P X BA _triangle A X C-A_ triangle P X C=fracfracBXCXA_triangle AXC-fracBXCXA_triangle PXCA _triangle A X C-A_ triangle P X C=fracBXCX$$






              share|cite|improve this answer









              $endgroup$















                3












                3








                3





                $begingroup$

                $A_triangle AXB: A_triangle AXC=BX:CXRightarrow A_triangle AXB=fracBXCXA_triangle AXC$



                $A_triangle PXB: A_triangle PXC=BX:CXRightarrow A_triangle PXB=fracBXCXA_triangle PXC$



                Hence $$fracA_triangle A X B -A _triangle P X BA _triangle A X C-A_ triangle P X C=fracfracBXCXA_triangle AXC-fracBXCXA_triangle PXCA _triangle A X C-A_ triangle P X C=fracBXCX$$






                share|cite|improve this answer









                $endgroup$



                $A_triangle AXB: A_triangle AXC=BX:CXRightarrow A_triangle AXB=fracBXCXA_triangle AXC$



                $A_triangle PXB: A_triangle PXC=BX:CXRightarrow A_triangle PXB=fracBXCXA_triangle PXC$



                Hence $$fracA_triangle A X B -A _triangle P X BA _triangle A X C-A_ triangle P X C=fracfracBXCXA_triangle AXC-fracBXCXA_triangle PXCA _triangle A X C-A_ triangle P X C=fracBXCX$$







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 hours ago









                YuiTo ChengYuiTo Cheng

                2,48341037




                2,48341037



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3190589%2funderstanding-cevas-theorem%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Log på Navigationsmenu

                    Wonderful Copenhagen (sang) Eksterne henvisninger | NavigationsmenurSide på frankloesser.comWonderful Copenhagen

                    Detroit Tigers Spis treści Historia | Skład zespołu | Sukcesy | Członkowie Baseball Hall of Fame | Zastrzeżone numery | Przypisy | Menu nawigacyjneEncyclopedia of Detroit - Detroit TigersTigers Stadium, Detroit, MITigers Timeline 1900sDetroit Tigers Team History & EncyclopediaTigers Timeline 1910s1935 World Series1945 World Series1945 World Series1984 World SeriesComerica Park, Detroit, MI2006 World Series2012 World SeriesDetroit Tigers 40-Man RosterDetroit Tigers Coaching StaffTigers Hall of FamersTigers Retired Numberse