Banach space and Hilbert space topologyIs any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space
Japan - Plan around max visa duration
whey we use polarized capacitor?
Why are only specific transaction types accepted into the mempool?
What are these boxed doors outside store fronts in New York?
Continuity at a point in terms of closure
N.B. ligature in Latex
How is the claim "I am in New York only if I am in America" the same as "If I am in New York, then I am in America?
How to get the available space of $HOME as a variable in shell scripting?
What would the Romans have called "sorcery"?
Is there really no realistic way for a skeleton monster to move around without magic?
Is it possible to do 50 km distance without any previous training?
Compute hash value according to multiplication method
I probably found a bug with the sudo apt install function
Why Is Death Allowed In the Matrix?
Why is an old chain unsafe?
Question about Goedel's incompleteness Proof
Modification to Chariots for Heavy Cavalry Analogue for 4-armed race
New order #4: World
How can I hide my bitcoin transactions to protect anonymity from others?
Do Phineas and Ferb ever actually get busted in real time?
Set-theoretical foundations of Mathematics with only bounded quantifiers
XeLaTeX and pdfLaTeX ignore hyphenation
Example of a relative pronoun
Draw simple lines in Inkscape
Banach space and Hilbert space topology
Is any Banach space a dual space?A Banach space that is not a Hilbert spaceIs every Hilbert space a Banach algebra?Which Hilbert space is isometrically isomorphism with $B(E)$ for some Banach space $E$.Is every Banach space densely embedded in a Hilbert space?Existence of a $mathbb C$-Banach space isometric to a Hilbert Space but whose norm is not induced by an inner product?An example of a Banach space isomorphic but not isometric to a dual Banach spaceThe Hahn-Banach Theorem for Hilbert SpaceBanach spaces and Hilbert spaceBasis of infinite dimensional Banach space and separable hilbert space
$begingroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
$endgroup$
add a comment |
$begingroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
$endgroup$
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
1 hour ago
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
1 hour ago
add a comment |
$begingroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
$endgroup$
Let $B$ be a Banach space. It is not necessarily true that
there exists a Hilbert space $H$ linearly isometric to $B$.
However, is it true that there exists a Hilbert space $H$
homeomorphic to $B$?
general-topology functional-analysis hilbert-spaces banach-spaces
general-topology functional-analysis hilbert-spaces banach-spaces
edited 1 hour ago
Henno Brandsma
115k349125
115k349125
asked 1 hour ago
user156213user156213
60338
60338
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
1 hour ago
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
1 hour ago
add a comment |
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
1 hour ago
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
1 hour ago
1
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
1 hour ago
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
1 hour ago
1
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
1 hour ago
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
1 hour ago
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
add a comment |
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
add a comment |
$begingroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.
$endgroup$
Yes, but this is quite a deep result. Two infinite-dimensional Banach spaces $X$ and $Y$ are homeomorphic iff $d(X)=d(Y)$, where the density $d(X)$ is the minimal size of a dense subset of $X$.
So any separable infinite-dimensional Banach space is homeomorphic to the Hilbert space $ell^2$ (and even to $mathbbR^omega$, because the result extends to locally convex completely metrisable TVS's as well). And for higher densities we have Hilbert spaces $ell_2(kappa)$ as models. Finite dimensional we only have the $mathbbR^n$ up to homeomorphism, which are already Hilbert spaces.
answered 1 hour ago
Henno BrandsmaHenno Brandsma
115k349125
115k349125
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3178808%2fbanach-space-and-hilbert-space-topology%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
$begingroup$
If $B$ is separable, then yes. All separable Banach Spaces are homeomorphic. So homeomorphic to $ell^2$
$endgroup$
– user124910
1 hour ago
1
$begingroup$
@user124910 We can extend this to non-separable as well. See my answer.
$endgroup$
– Henno Brandsma
1 hour ago