Validation accuracy vs Testing accuracyInformation on how value of k in k-fold cross-validation affects resulting accuraciesEstimating the variance of a bootstrap aggregator performance?Inconsistency in cross-validation resultsCross-validation including training, validation, and testing. Why do we need three subsets?My Test accuracy is pretty bad compared to cross-validation accuracyBetter accuracy with validation set than test setFeature selection: is nested cross-validation needed?10-fold cross validation, why having a validation set?Bias-Variance terminology for loss functions in ML vs cross-validation — different things?Is cross-validation better/worse than a third holdout set?

How to report a triplet of septets in NMR tabulation?

Compute hash value according to multiplication method

XeLaTeX and pdfLaTeX ignore hyphenation

Why is "Reports" in sentence down without "The"

Possibly bubble sort algorithm

Why CLRS example on residual networks does not follows its formula?

How is this relation reflexive?

Is there really no realistic way for a skeleton monster to move around without magic?

How to add power-LED to my small amplifier?

What would the Romans have called "sorcery"?

Copycat chess is back

How can I automatically replace [[ and ]] with the [LeftDoubleBracket] and [RightDoubleBracket] operators?

What are these boxed doors outside store fronts in New York?

declaring a variable twice in IIFE

Why is this code 6.5x slower with optimizations enabled?

Why Is Death Allowed In the Matrix?

Draw simple lines in Inkscape

"You are your self first supporter", a more proper way to say it

GPS Rollover on Android Smartphones

How does one intimidate enemies without having the capacity for violence?

Japan - Plan around max visa duration

Pronouncing Dictionary.com's W.O.D "vade mecum" in English

Can I make popcorn with any corn?

Why doesn't Newton's third law mean a person bounces back to where they started when they hit the ground?



Validation accuracy vs Testing accuracy


Information on how value of k in k-fold cross-validation affects resulting accuraciesEstimating the variance of a bootstrap aggregator performance?Inconsistency in cross-validation resultsCross-validation including training, validation, and testing. Why do we need three subsets?My Test accuracy is pretty bad compared to cross-validation accuracyBetter accuracy with validation set than test setFeature selection: is nested cross-validation needed?10-fold cross validation, why having a validation set?Bias-Variance terminology for loss functions in ML vs cross-validation — different things?Is cross-validation better/worse than a third holdout set?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








2












$begingroup$


I am trying to get my head straight on terminology which appears confusing. I know there are three 'splits' of data used in Machine learning models.:



  1. Training Data - Train the model

  2. Validation Data - Cross validation for model selection

  3. Testing Data - Test the generalisation error.

Now, as far as I am aware, the validation data is not always used as one can use k-fold cross-validation, reducing the need to further reduce ones dataset. The results of which are known as the validation accuracy. Then once the best model is selected, the model is tested on a 33% split from the initial data set (which has not been used to train). The results of this would be the testing accuracy?



Is this the right way around? or is vice versa? I am finding conflicting terminology used online! I am trying to find some explanations why my validation error is larger than my testing error, but before I find a solution, i would like to get my terminology correct.



Thanks.










share|cite|improve this question









$endgroup$


















    2












    $begingroup$


    I am trying to get my head straight on terminology which appears confusing. I know there are three 'splits' of data used in Machine learning models.:



    1. Training Data - Train the model

    2. Validation Data - Cross validation for model selection

    3. Testing Data - Test the generalisation error.

    Now, as far as I am aware, the validation data is not always used as one can use k-fold cross-validation, reducing the need to further reduce ones dataset. The results of which are known as the validation accuracy. Then once the best model is selected, the model is tested on a 33% split from the initial data set (which has not been used to train). The results of this would be the testing accuracy?



    Is this the right way around? or is vice versa? I am finding conflicting terminology used online! I am trying to find some explanations why my validation error is larger than my testing error, but before I find a solution, i would like to get my terminology correct.



    Thanks.










    share|cite|improve this question









    $endgroup$














      2












      2








      2


      1



      $begingroup$


      I am trying to get my head straight on terminology which appears confusing. I know there are three 'splits' of data used in Machine learning models.:



      1. Training Data - Train the model

      2. Validation Data - Cross validation for model selection

      3. Testing Data - Test the generalisation error.

      Now, as far as I am aware, the validation data is not always used as one can use k-fold cross-validation, reducing the need to further reduce ones dataset. The results of which are known as the validation accuracy. Then once the best model is selected, the model is tested on a 33% split from the initial data set (which has not been used to train). The results of this would be the testing accuracy?



      Is this the right way around? or is vice versa? I am finding conflicting terminology used online! I am trying to find some explanations why my validation error is larger than my testing error, but before I find a solution, i would like to get my terminology correct.



      Thanks.










      share|cite|improve this question









      $endgroup$




      I am trying to get my head straight on terminology which appears confusing. I know there are three 'splits' of data used in Machine learning models.:



      1. Training Data - Train the model

      2. Validation Data - Cross validation for model selection

      3. Testing Data - Test the generalisation error.

      Now, as far as I am aware, the validation data is not always used as one can use k-fold cross-validation, reducing the need to further reduce ones dataset. The results of which are known as the validation accuracy. Then once the best model is selected, the model is tested on a 33% split from the initial data set (which has not been used to train). The results of this would be the testing accuracy?



      Is this the right way around? or is vice versa? I am finding conflicting terminology used online! I am trying to find some explanations why my validation error is larger than my testing error, but before I find a solution, i would like to get my terminology correct.



      Thanks.







      machine-learning






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 5 hours ago









      BillyJo_ramblerBillyJo_rambler

      296




      296




















          2 Answers
          2






          active

          oldest

          votes


















          1












          $begingroup$

          There isn't a standard terminology in this context (and I have seen long discussions and debates regarding this topic), so I completely understand you, but you should get used to different terminology (and assume that terminology might not be consistent or it change across sources).



          I would like to point out a few things:



          • I have never seen people use the expression "validation accuracy" (or dataset) to refer to the test accuracy (or dataset), but I have seen people use the term "test accuracy" (or dataset) to refer to the validation accuracy (or dataset). In other words, the test (or testing) accuracy often refers to the validation accuracy, that is, the accuracy you calculate on the data set you do not use for training, but you use (during the training process) for validating (or "testing") the generalisation ability of your model or for "early stopping".


          • In k-fold cross-validation, people usually only mention two datasets: training and testing (or validation).


          • k-fold cross-validation is just a way of validating the model on different subsets of the data. This can be done for several reasons. For example, you have a small amount of data, so your validation (and training) dataset is quite small, so you want to have a better understanding of the model's generalisation ability by validating it on several subsets of the whole dataset.


          • You should likely have a separate (from the validation dataset) dataset for testing, because the validation dataset can be used for early stopping, so, in a certain way, it is dependent on the training process


          I would suggest to use the following terminology



          • Training dataset: the data used to fit the model.

          • Validation dataset: the data used to validate the generalisation ability of the model or for early stopping, during the training process.

          • Testing dataset: the data used to for other purposes other than training and validating.

          Note that some of these datasets might overlap. If that's a "good" thing or not, it's another question.






          share|cite|improve this answer











          $endgroup$




















            1












            $begingroup$

            @nbro's answer is complete. I just add a couple of explanations to supplement. In more traditional textbooks data is often partitioned into two sets: training and test. In recent years, with more complex models and increasing need for model selection, development sets or validations sets are also considered. Devel/validation should have no overlap with the test set or the reporting accuracy/ error evaluation is not valid. In the modern setting: the model is trained on the training set, tested on the validation set to see if it is a good fit, possibly model is tweaked and trained again and validated again for multiple times. When the final model is selected, the testing set is used to calculate accuracy, error reports. The important thing is that the test set is only touched once.






            share|cite|improve this answer








            New contributor




            user3089485 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
            Check out our Code of Conduct.






            $endgroup$













              Your Answer





              StackExchange.ifUsing("editor", function ()
              return StackExchange.using("mathjaxEditing", function ()
              StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
              StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
              );
              );
              , "mathjax-editing");

              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "65"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );













              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401696%2fvalidation-accuracy-vs-testing-accuracy%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1












              $begingroup$

              There isn't a standard terminology in this context (and I have seen long discussions and debates regarding this topic), so I completely understand you, but you should get used to different terminology (and assume that terminology might not be consistent or it change across sources).



              I would like to point out a few things:



              • I have never seen people use the expression "validation accuracy" (or dataset) to refer to the test accuracy (or dataset), but I have seen people use the term "test accuracy" (or dataset) to refer to the validation accuracy (or dataset). In other words, the test (or testing) accuracy often refers to the validation accuracy, that is, the accuracy you calculate on the data set you do not use for training, but you use (during the training process) for validating (or "testing") the generalisation ability of your model or for "early stopping".


              • In k-fold cross-validation, people usually only mention two datasets: training and testing (or validation).


              • k-fold cross-validation is just a way of validating the model on different subsets of the data. This can be done for several reasons. For example, you have a small amount of data, so your validation (and training) dataset is quite small, so you want to have a better understanding of the model's generalisation ability by validating it on several subsets of the whole dataset.


              • You should likely have a separate (from the validation dataset) dataset for testing, because the validation dataset can be used for early stopping, so, in a certain way, it is dependent on the training process


              I would suggest to use the following terminology



              • Training dataset: the data used to fit the model.

              • Validation dataset: the data used to validate the generalisation ability of the model or for early stopping, during the training process.

              • Testing dataset: the data used to for other purposes other than training and validating.

              Note that some of these datasets might overlap. If that's a "good" thing or not, it's another question.






              share|cite|improve this answer











              $endgroup$

















                1












                $begingroup$

                There isn't a standard terminology in this context (and I have seen long discussions and debates regarding this topic), so I completely understand you, but you should get used to different terminology (and assume that terminology might not be consistent or it change across sources).



                I would like to point out a few things:



                • I have never seen people use the expression "validation accuracy" (or dataset) to refer to the test accuracy (or dataset), but I have seen people use the term "test accuracy" (or dataset) to refer to the validation accuracy (or dataset). In other words, the test (or testing) accuracy often refers to the validation accuracy, that is, the accuracy you calculate on the data set you do not use for training, but you use (during the training process) for validating (or "testing") the generalisation ability of your model or for "early stopping".


                • In k-fold cross-validation, people usually only mention two datasets: training and testing (or validation).


                • k-fold cross-validation is just a way of validating the model on different subsets of the data. This can be done for several reasons. For example, you have a small amount of data, so your validation (and training) dataset is quite small, so you want to have a better understanding of the model's generalisation ability by validating it on several subsets of the whole dataset.


                • You should likely have a separate (from the validation dataset) dataset for testing, because the validation dataset can be used for early stopping, so, in a certain way, it is dependent on the training process


                I would suggest to use the following terminology



                • Training dataset: the data used to fit the model.

                • Validation dataset: the data used to validate the generalisation ability of the model or for early stopping, during the training process.

                • Testing dataset: the data used to for other purposes other than training and validating.

                Note that some of these datasets might overlap. If that's a "good" thing or not, it's another question.






                share|cite|improve this answer











                $endgroup$















                  1












                  1








                  1





                  $begingroup$

                  There isn't a standard terminology in this context (and I have seen long discussions and debates regarding this topic), so I completely understand you, but you should get used to different terminology (and assume that terminology might not be consistent or it change across sources).



                  I would like to point out a few things:



                  • I have never seen people use the expression "validation accuracy" (or dataset) to refer to the test accuracy (or dataset), but I have seen people use the term "test accuracy" (or dataset) to refer to the validation accuracy (or dataset). In other words, the test (or testing) accuracy often refers to the validation accuracy, that is, the accuracy you calculate on the data set you do not use for training, but you use (during the training process) for validating (or "testing") the generalisation ability of your model or for "early stopping".


                  • In k-fold cross-validation, people usually only mention two datasets: training and testing (or validation).


                  • k-fold cross-validation is just a way of validating the model on different subsets of the data. This can be done for several reasons. For example, you have a small amount of data, so your validation (and training) dataset is quite small, so you want to have a better understanding of the model's generalisation ability by validating it on several subsets of the whole dataset.


                  • You should likely have a separate (from the validation dataset) dataset for testing, because the validation dataset can be used for early stopping, so, in a certain way, it is dependent on the training process


                  I would suggest to use the following terminology



                  • Training dataset: the data used to fit the model.

                  • Validation dataset: the data used to validate the generalisation ability of the model or for early stopping, during the training process.

                  • Testing dataset: the data used to for other purposes other than training and validating.

                  Note that some of these datasets might overlap. If that's a "good" thing or not, it's another question.






                  share|cite|improve this answer











                  $endgroup$



                  There isn't a standard terminology in this context (and I have seen long discussions and debates regarding this topic), so I completely understand you, but you should get used to different terminology (and assume that terminology might not be consistent or it change across sources).



                  I would like to point out a few things:



                  • I have never seen people use the expression "validation accuracy" (or dataset) to refer to the test accuracy (or dataset), but I have seen people use the term "test accuracy" (or dataset) to refer to the validation accuracy (or dataset). In other words, the test (or testing) accuracy often refers to the validation accuracy, that is, the accuracy you calculate on the data set you do not use for training, but you use (during the training process) for validating (or "testing") the generalisation ability of your model or for "early stopping".


                  • In k-fold cross-validation, people usually only mention two datasets: training and testing (or validation).


                  • k-fold cross-validation is just a way of validating the model on different subsets of the data. This can be done for several reasons. For example, you have a small amount of data, so your validation (and training) dataset is quite small, so you want to have a better understanding of the model's generalisation ability by validating it on several subsets of the whole dataset.


                  • You should likely have a separate (from the validation dataset) dataset for testing, because the validation dataset can be used for early stopping, so, in a certain way, it is dependent on the training process


                  I would suggest to use the following terminology



                  • Training dataset: the data used to fit the model.

                  • Validation dataset: the data used to validate the generalisation ability of the model or for early stopping, during the training process.

                  • Testing dataset: the data used to for other purposes other than training and validating.

                  Note that some of these datasets might overlap. If that's a "good" thing or not, it's another question.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 4 hours ago

























                  answered 4 hours ago









                  nbronbro

                  8111023




                  8111023























                      1












                      $begingroup$

                      @nbro's answer is complete. I just add a couple of explanations to supplement. In more traditional textbooks data is often partitioned into two sets: training and test. In recent years, with more complex models and increasing need for model selection, development sets or validations sets are also considered. Devel/validation should have no overlap with the test set or the reporting accuracy/ error evaluation is not valid. In the modern setting: the model is trained on the training set, tested on the validation set to see if it is a good fit, possibly model is tweaked and trained again and validated again for multiple times. When the final model is selected, the testing set is used to calculate accuracy, error reports. The important thing is that the test set is only touched once.






                      share|cite|improve this answer








                      New contributor




                      user3089485 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                      Check out our Code of Conduct.






                      $endgroup$

















                        1












                        $begingroup$

                        @nbro's answer is complete. I just add a couple of explanations to supplement. In more traditional textbooks data is often partitioned into two sets: training and test. In recent years, with more complex models and increasing need for model selection, development sets or validations sets are also considered. Devel/validation should have no overlap with the test set or the reporting accuracy/ error evaluation is not valid. In the modern setting: the model is trained on the training set, tested on the validation set to see if it is a good fit, possibly model is tweaked and trained again and validated again for multiple times. When the final model is selected, the testing set is used to calculate accuracy, error reports. The important thing is that the test set is only touched once.






                        share|cite|improve this answer








                        New contributor




                        user3089485 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                        Check out our Code of Conduct.






                        $endgroup$















                          1












                          1








                          1





                          $begingroup$

                          @nbro's answer is complete. I just add a couple of explanations to supplement. In more traditional textbooks data is often partitioned into two sets: training and test. In recent years, with more complex models and increasing need for model selection, development sets or validations sets are also considered. Devel/validation should have no overlap with the test set or the reporting accuracy/ error evaluation is not valid. In the modern setting: the model is trained on the training set, tested on the validation set to see if it is a good fit, possibly model is tweaked and trained again and validated again for multiple times. When the final model is selected, the testing set is used to calculate accuracy, error reports. The important thing is that the test set is only touched once.






                          share|cite|improve this answer








                          New contributor




                          user3089485 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.






                          $endgroup$



                          @nbro's answer is complete. I just add a couple of explanations to supplement. In more traditional textbooks data is often partitioned into two sets: training and test. In recent years, with more complex models and increasing need for model selection, development sets or validations sets are also considered. Devel/validation should have no overlap with the test set or the reporting accuracy/ error evaluation is not valid. In the modern setting: the model is trained on the training set, tested on the validation set to see if it is a good fit, possibly model is tweaked and trained again and validated again for multiple times. When the final model is selected, the testing set is used to calculate accuracy, error reports. The important thing is that the test set is only touched once.







                          share|cite|improve this answer








                          New contributor




                          user3089485 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.









                          share|cite|improve this answer



                          share|cite|improve this answer






                          New contributor




                          user3089485 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.









                          answered 1 hour ago









                          user3089485user3089485

                          162




                          162




                          New contributor




                          user3089485 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.





                          New contributor





                          user3089485 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.






                          user3089485 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                          Check out our Code of Conduct.



























                              draft saved

                              draft discarded
















































                              Thanks for contributing an answer to Cross Validated!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              Use MathJax to format equations. MathJax reference.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f401696%2fvalidation-accuracy-vs-testing-accuracy%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Log på Navigationsmenu

                              Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                              Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5