Why is this code 6.5x slower with optimizations enabled?Unit Testing C CodeWith arrays, why is it the case that a[5] == 5[a]?Why doesn't GCC optimize a*a*a*a*a*a to (a*a*a)*(a*a*a)?Why are elementwise additions much faster in separate loops than in a combined loop?What is “:-!!” in C code?Why is my program slow when looping over exactly 8192 elements?Obfuscated C Code Contest 2006. Please explain sykes2.cWhy does the C preprocessor interpret the word “linux” as the constant “1”?Why does GCC generate 15-20% faster code if I optimize for size instead of speed?How is the linking done for string functions in C?

The use of multiple foreign keys on same column in SQL Server

Accidentally leaked the solution to an assignment, what to do now? (I'm the prof)

How is it possible to have an ability score that is less than 3?

Validation accuracy vs Testing accuracy

TGV timetables / schedules?

How to get the available space of $HOME as a variable in shell scripting?

How does one intimidate enemies without having the capacity for violence?

How can the DM most effectively choose 1 out of an odd number of players to be targeted by an attack or effect?

Can an x86 CPU running in real mode be considered to be basically an 8086 CPU?

What is the offset in a seaplane's hull?

Example of a relative pronoun

If Manufacturer spice model and Datasheet give different values which should I use?

How to add power-LED to my small amplifier?

I probably found a bug with the sudo apt install function

Should I join office cleaning event for free?

How is this relation reflexive?

What defenses are there against being summoned by the Gate spell?

Are tax years 2016 & 2017 back taxes deductible for tax year 2018?

How old can references or sources in a thesis be?

Continuity at a point in terms of closure

XeLaTeX and pdfLaTeX ignore hyphenation

Is it tax fraud for an individual to declare non-taxable revenue as taxable income? (US tax laws)

Is it possible to do 50 km distance without any previous training?

What are these boxed doors outside store fronts in New York?



Why is this code 6.5x slower with optimizations enabled?


Unit Testing C CodeWith arrays, why is it the case that a[5] == 5[a]?Why doesn't GCC optimize a*a*a*a*a*a to (a*a*a)*(a*a*a)?Why are elementwise additions much faster in separate loops than in a combined loop?What is “:-!!” in C code?Why is my program slow when looping over exactly 8192 elements?Obfuscated C Code Contest 2006. Please explain sykes2.cWhy does the C preprocessor interpret the word “linux” as the constant “1”?Why does GCC generate 15-20% faster code if I optimize for size instead of speed?How is the linking done for string functions in C?






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








8















I wanted to benchmark glibc's strlen function for some reason and found out it apparently performs much slower with optimizations enabled in GCC and I have no idea why.



Here's my code:



#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

int main()
char *s = calloc(1 << 20, 1);
memset(s, 65, 1000000);
clock_t start = clock();
for (int i = 0; i < 128; ++i)
s[strlen(s)] = 'A';

clock_t end = clock();
printf("%lldn", (long long)(end-start));
return 0;



On my machine it outputs:



$ gcc test.c && ./a.out
13336
$ gcc -O1 test.c && ./a.out
199004
$ gcc -O2 test.c && ./a.out
83415
$ gcc -O3 test.c && ./a.out
83415


Somehow, enabling optimizations causes it to execute longer.










share|improve this question
























  • With gcc-8.2 debug version takes 51334, release 8246. Release compiler options -O3 -march=native -DNDEBUG

    – Maxim Egorushkin
    2 hours ago












  • Please report it to gcc's bugzilla.

    – Marc Glisse
    2 hours ago











  • Using -fno-builtin makes the problem go away. So presumably the issue is that in this particular instance, GCC's builtin strlen is slower than the library's.

    – David Schwartz
    2 hours ago











  • It is generating repnz scasb for strlen at -O1.

    – Marc Glisse
    2 hours ago












  • @MarcGlisse and for -O2 and -O3, it's loading and comparing the chars as integers. Unfortunately, the naive -O0 uses the library function which uses vector-instructions that beat this optimization easily.

    – EOF
    2 hours ago


















8















I wanted to benchmark glibc's strlen function for some reason and found out it apparently performs much slower with optimizations enabled in GCC and I have no idea why.



Here's my code:



#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

int main()
char *s = calloc(1 << 20, 1);
memset(s, 65, 1000000);
clock_t start = clock();
for (int i = 0; i < 128; ++i)
s[strlen(s)] = 'A';

clock_t end = clock();
printf("%lldn", (long long)(end-start));
return 0;



On my machine it outputs:



$ gcc test.c && ./a.out
13336
$ gcc -O1 test.c && ./a.out
199004
$ gcc -O2 test.c && ./a.out
83415
$ gcc -O3 test.c && ./a.out
83415


Somehow, enabling optimizations causes it to execute longer.










share|improve this question
























  • With gcc-8.2 debug version takes 51334, release 8246. Release compiler options -O3 -march=native -DNDEBUG

    – Maxim Egorushkin
    2 hours ago












  • Please report it to gcc's bugzilla.

    – Marc Glisse
    2 hours ago











  • Using -fno-builtin makes the problem go away. So presumably the issue is that in this particular instance, GCC's builtin strlen is slower than the library's.

    – David Schwartz
    2 hours ago











  • It is generating repnz scasb for strlen at -O1.

    – Marc Glisse
    2 hours ago












  • @MarcGlisse and for -O2 and -O3, it's loading and comparing the chars as integers. Unfortunately, the naive -O0 uses the library function which uses vector-instructions that beat this optimization easily.

    – EOF
    2 hours ago














8












8








8








I wanted to benchmark glibc's strlen function for some reason and found out it apparently performs much slower with optimizations enabled in GCC and I have no idea why.



Here's my code:



#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

int main()
char *s = calloc(1 << 20, 1);
memset(s, 65, 1000000);
clock_t start = clock();
for (int i = 0; i < 128; ++i)
s[strlen(s)] = 'A';

clock_t end = clock();
printf("%lldn", (long long)(end-start));
return 0;



On my machine it outputs:



$ gcc test.c && ./a.out
13336
$ gcc -O1 test.c && ./a.out
199004
$ gcc -O2 test.c && ./a.out
83415
$ gcc -O3 test.c && ./a.out
83415


Somehow, enabling optimizations causes it to execute longer.










share|improve this question
















I wanted to benchmark glibc's strlen function for some reason and found out it apparently performs much slower with optimizations enabled in GCC and I have no idea why.



Here's my code:



#include <time.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>

int main()
char *s = calloc(1 << 20, 1);
memset(s, 65, 1000000);
clock_t start = clock();
for (int i = 0; i < 128; ++i)
s[strlen(s)] = 'A';

clock_t end = clock();
printf("%lldn", (long long)(end-start));
return 0;



On my machine it outputs:



$ gcc test.c && ./a.out
13336
$ gcc -O1 test.c && ./a.out
199004
$ gcc -O2 test.c && ./a.out
83415
$ gcc -O3 test.c && ./a.out
83415


Somehow, enabling optimizations causes it to execute longer.







c gcc glibc






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 hours ago









Fei Xiang

2,1634822




2,1634822










asked 2 hours ago









TsarNTsarN

4315




4315












  • With gcc-8.2 debug version takes 51334, release 8246. Release compiler options -O3 -march=native -DNDEBUG

    – Maxim Egorushkin
    2 hours ago












  • Please report it to gcc's bugzilla.

    – Marc Glisse
    2 hours ago











  • Using -fno-builtin makes the problem go away. So presumably the issue is that in this particular instance, GCC's builtin strlen is slower than the library's.

    – David Schwartz
    2 hours ago











  • It is generating repnz scasb for strlen at -O1.

    – Marc Glisse
    2 hours ago












  • @MarcGlisse and for -O2 and -O3, it's loading and comparing the chars as integers. Unfortunately, the naive -O0 uses the library function which uses vector-instructions that beat this optimization easily.

    – EOF
    2 hours ago


















  • With gcc-8.2 debug version takes 51334, release 8246. Release compiler options -O3 -march=native -DNDEBUG

    – Maxim Egorushkin
    2 hours ago












  • Please report it to gcc's bugzilla.

    – Marc Glisse
    2 hours ago











  • Using -fno-builtin makes the problem go away. So presumably the issue is that in this particular instance, GCC's builtin strlen is slower than the library's.

    – David Schwartz
    2 hours ago











  • It is generating repnz scasb for strlen at -O1.

    – Marc Glisse
    2 hours ago












  • @MarcGlisse and for -O2 and -O3, it's loading and comparing the chars as integers. Unfortunately, the naive -O0 uses the library function which uses vector-instructions that beat this optimization easily.

    – EOF
    2 hours ago

















With gcc-8.2 debug version takes 51334, release 8246. Release compiler options -O3 -march=native -DNDEBUG

– Maxim Egorushkin
2 hours ago






With gcc-8.2 debug version takes 51334, release 8246. Release compiler options -O3 -march=native -DNDEBUG

– Maxim Egorushkin
2 hours ago














Please report it to gcc's bugzilla.

– Marc Glisse
2 hours ago





Please report it to gcc's bugzilla.

– Marc Glisse
2 hours ago













Using -fno-builtin makes the problem go away. So presumably the issue is that in this particular instance, GCC's builtin strlen is slower than the library's.

– David Schwartz
2 hours ago





Using -fno-builtin makes the problem go away. So presumably the issue is that in this particular instance, GCC's builtin strlen is slower than the library's.

– David Schwartz
2 hours ago













It is generating repnz scasb for strlen at -O1.

– Marc Glisse
2 hours ago






It is generating repnz scasb for strlen at -O1.

– Marc Glisse
2 hours ago














@MarcGlisse and for -O2 and -O3, it's loading and comparing the chars as integers. Unfortunately, the naive -O0 uses the library function which uses vector-instructions that beat this optimization easily.

– EOF
2 hours ago






@MarcGlisse and for -O2 and -O3, it's loading and comparing the chars as integers. Unfortunately, the naive -O0 uses the library function which uses vector-instructions that beat this optimization easily.

– EOF
2 hours ago













1 Answer
1






active

oldest

votes


















5














Testing your code on Godbolt's Compiler Explorer provides this explanation:



  • at -O0 or without optimisations, the generated code call the C library function strlen

  • at -O1 the generated code uses a simple inline expansion using a rep scasb instruction.

  • at -O2 and above, the generated code uses a more elaborate inline expansion.

Benchmarking your code repeatedly shows a substantial variation from one run to another, but increasing the number of iterations shows that:



  • the -O1 code is much slower than the C library implementation: 32240 vs 3090

  • the -O2 code is faster than the -O1 but still substantially slower than the C ibrary code: 8570 vs 3090.

This behavior is specific to gcc and the glibc. The same test on OS/X with clang and Apple's Libc does not show a significant difference, which is not a surprise as Godbolt shows that clang generates a call to the C library strlen at all optimisation levels.



This could be considered a bug in gcc/glibc but more extensive benchmarking might show that the overhead of calling strlen has a more important impact than the lack of performance of the inline code for small strings. The strings on which you benchmark are uncommonly large, so focusing the benchmark on ultra-long strings might not give meaningful results.



I updated the benchmark for smaller strings and it shows similar performance for string lengths varying from 0 to 100 at -O0 and -O2 but still a much worse performance at -O1, 3 times slower.



Here is the updated code:



#include <stdlib.h>
#include <string.h>
#include <time.h>

void benchmark(int repeat, int minlen, int maxlen)
char *s = malloc(maxlen + 1);
memset(s, 'A', minlen);
long long bytes = 0, calls = 0;
clock_t clk = clock();
for (int n = 0; n < repeat; n++)
for (int i = minlen; i < maxlen; ++i)
bytes += i + 1;
calls += 1;
s[i] = '';
s[strlen(s)] = 'A';


clk = clock() - clk;
free(s);
double avglen = (minlen + maxlen - 1) / 2.0;
double ns = (double)clk * 1e9 / CLOCKS_PER_SEC;
printf("average length %7.0f -> avg time: %7.3f ns/byte, %7.3f ns/calln",
avglen, ns / bytes, ns / calls);


int main()
benchmark(10000000, 0, 1);
benchmark(1000000, 0, 10);
benchmark(1000000, 5, 15);
benchmark(100000, 0, 100);
benchmark(100000, 50, 150);
benchmark(10000, 0, 1000);
benchmark(10000, 500, 1500);
benchmark(1000, 0, 10000);
benchmark(1000, 5000, 15000);
benchmark(100, 1000000 - 50, 1000000 + 50);
return 0;



Here is the output:




chqrlie> gcc -std=c99 -O0 benchstrlen.c && ./a.out
average length 0 -> avg time: 14.000 ns/byte, 14.000 ns/call
average length 4 -> avg time: 2.364 ns/byte, 13.000 ns/call
average length 10 -> avg time: 1.238 ns/byte, 13.000 ns/call
average length 50 -> avg time: 0.317 ns/byte, 16.000 ns/call
average length 100 -> avg time: 0.169 ns/byte, 17.000 ns/call
average length 500 -> avg time: 0.074 ns/byte, 37.000 ns/call
average length 1000 -> avg time: 0.068 ns/byte, 68.000 ns/call
average length 5000 -> avg time: 0.064 ns/byte, 318.000 ns/call
average length 10000 -> avg time: 0.062 ns/byte, 622.000 ns/call
average length 1000000 -> avg time: 0.062 ns/byte, 62000.000 ns/call
chqrlie> gcc -std=c99 -O1 benchstrlen.c && ./a.out
average length 0 -> avg time: 20.000 ns/byte, 20.000 ns/call
average length 4 -> avg time: 3.818 ns/byte, 21.000 ns/call
average length 10 -> avg time: 2.190 ns/byte, 23.000 ns/call
average length 50 -> avg time: 0.990 ns/byte, 50.000 ns/call
average length 100 -> avg time: 0.816 ns/byte, 82.000 ns/call
average length 500 -> avg time: 0.679 ns/byte, 340.000 ns/call
average length 1000 -> avg time: 0.664 ns/byte, 664.000 ns/call
average length 5000 -> avg time: 0.651 ns/byte, 3254.000 ns/call
average length 10000 -> avg time: 0.649 ns/byte, 6491.000 ns/call
average length 1000000 -> avg time: 0.648 ns/byte, 648000.000 ns/call
chqrlie> gcc -std=c99 -O2 benchstrlen.c && ./a.out
average length 0 -> avg time: 10.000 ns/byte, 10.000 ns/call
average length 4 -> avg time: 2.000 ns/byte, 11.000 ns/call
average length 10 -> avg time: 1.048 ns/byte, 11.000 ns/call
average length 50 -> avg time: 0.337 ns/byte, 17.000 ns/call
average length 100 -> avg time: 0.299 ns/byte, 30.000 ns/call
average length 500 -> avg time: 0.202 ns/byte, 101.000 ns/call
average length 1000 -> avg time: 0.188 ns/byte, 188.000 ns/call
average length 5000 -> avg time: 0.174 ns/byte, 868.000 ns/call
average length 10000 -> avg time: 0.172 ns/byte, 1716.000 ns/call
average length 1000000 -> avg time: 0.172 ns/byte, 172000.000 ns/call





share|improve this answer

























  • Wouldn't it still be better for the inlined version to use the same optimizations as the library strlen, giving the best of both worlds?

    – Daniel H
    1 hour ago






  • 1





    It would, but the hand optimized version in the C library might be larger and more complicated to inline. I have not looked into this recently, but there used to be a mix of complex platform specific macros in <string.h> and hard coded optimisations in the gcc code generator. Definitely still room for improvement on intel targets.

    – chqrlie
    1 hour ago











  • Does it change if you use -march=native -mtune=native?

    – Deduplicator
    52 mins ago











  • Note that the GNU C library function for strlen() is likely optimised for extremely large strings (that no sane programmer will care about) at the expense of performance for small strings (that are extremely common); and the optimisations done by the library version should never be done. The problem here is that the OP's code doesn't keep track of the string's length itself (e.g. with an int len; variable) and should not have used strlen() at all, making the code so bad for performance that "optimised for something no sane programmer would care about" actually helped.

    – Brendan
    49 mins ago












  • @Brendan: the OP is trying to benchmark strlen. He does focus the benchmark on insanely long strings for which the C library strlen outperforms inline expansion hands down. I improved this benchmark and tested various string lengths. It appears from the benchmarks on linux with gcc (Debian 4.7.2-5) 4.7.2 running on an Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz that the inline code generated by -O1 is always slower, by as much as a factor of 10 for moderately long strings, while -O2 is only slightly faster than the libc strlen for very short strings and half as fast for longer strings.

    – chqrlie
    25 mins ago











Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55563598%2fwhy-is-this-code-6-5x-slower-with-optimizations-enabled%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









5














Testing your code on Godbolt's Compiler Explorer provides this explanation:



  • at -O0 or without optimisations, the generated code call the C library function strlen

  • at -O1 the generated code uses a simple inline expansion using a rep scasb instruction.

  • at -O2 and above, the generated code uses a more elaborate inline expansion.

Benchmarking your code repeatedly shows a substantial variation from one run to another, but increasing the number of iterations shows that:



  • the -O1 code is much slower than the C library implementation: 32240 vs 3090

  • the -O2 code is faster than the -O1 but still substantially slower than the C ibrary code: 8570 vs 3090.

This behavior is specific to gcc and the glibc. The same test on OS/X with clang and Apple's Libc does not show a significant difference, which is not a surprise as Godbolt shows that clang generates a call to the C library strlen at all optimisation levels.



This could be considered a bug in gcc/glibc but more extensive benchmarking might show that the overhead of calling strlen has a more important impact than the lack of performance of the inline code for small strings. The strings on which you benchmark are uncommonly large, so focusing the benchmark on ultra-long strings might not give meaningful results.



I updated the benchmark for smaller strings and it shows similar performance for string lengths varying from 0 to 100 at -O0 and -O2 but still a much worse performance at -O1, 3 times slower.



Here is the updated code:



#include <stdlib.h>
#include <string.h>
#include <time.h>

void benchmark(int repeat, int minlen, int maxlen)
char *s = malloc(maxlen + 1);
memset(s, 'A', minlen);
long long bytes = 0, calls = 0;
clock_t clk = clock();
for (int n = 0; n < repeat; n++)
for (int i = minlen; i < maxlen; ++i)
bytes += i + 1;
calls += 1;
s[i] = '';
s[strlen(s)] = 'A';


clk = clock() - clk;
free(s);
double avglen = (minlen + maxlen - 1) / 2.0;
double ns = (double)clk * 1e9 / CLOCKS_PER_SEC;
printf("average length %7.0f -> avg time: %7.3f ns/byte, %7.3f ns/calln",
avglen, ns / bytes, ns / calls);


int main()
benchmark(10000000, 0, 1);
benchmark(1000000, 0, 10);
benchmark(1000000, 5, 15);
benchmark(100000, 0, 100);
benchmark(100000, 50, 150);
benchmark(10000, 0, 1000);
benchmark(10000, 500, 1500);
benchmark(1000, 0, 10000);
benchmark(1000, 5000, 15000);
benchmark(100, 1000000 - 50, 1000000 + 50);
return 0;



Here is the output:




chqrlie> gcc -std=c99 -O0 benchstrlen.c && ./a.out
average length 0 -> avg time: 14.000 ns/byte, 14.000 ns/call
average length 4 -> avg time: 2.364 ns/byte, 13.000 ns/call
average length 10 -> avg time: 1.238 ns/byte, 13.000 ns/call
average length 50 -> avg time: 0.317 ns/byte, 16.000 ns/call
average length 100 -> avg time: 0.169 ns/byte, 17.000 ns/call
average length 500 -> avg time: 0.074 ns/byte, 37.000 ns/call
average length 1000 -> avg time: 0.068 ns/byte, 68.000 ns/call
average length 5000 -> avg time: 0.064 ns/byte, 318.000 ns/call
average length 10000 -> avg time: 0.062 ns/byte, 622.000 ns/call
average length 1000000 -> avg time: 0.062 ns/byte, 62000.000 ns/call
chqrlie> gcc -std=c99 -O1 benchstrlen.c && ./a.out
average length 0 -> avg time: 20.000 ns/byte, 20.000 ns/call
average length 4 -> avg time: 3.818 ns/byte, 21.000 ns/call
average length 10 -> avg time: 2.190 ns/byte, 23.000 ns/call
average length 50 -> avg time: 0.990 ns/byte, 50.000 ns/call
average length 100 -> avg time: 0.816 ns/byte, 82.000 ns/call
average length 500 -> avg time: 0.679 ns/byte, 340.000 ns/call
average length 1000 -> avg time: 0.664 ns/byte, 664.000 ns/call
average length 5000 -> avg time: 0.651 ns/byte, 3254.000 ns/call
average length 10000 -> avg time: 0.649 ns/byte, 6491.000 ns/call
average length 1000000 -> avg time: 0.648 ns/byte, 648000.000 ns/call
chqrlie> gcc -std=c99 -O2 benchstrlen.c && ./a.out
average length 0 -> avg time: 10.000 ns/byte, 10.000 ns/call
average length 4 -> avg time: 2.000 ns/byte, 11.000 ns/call
average length 10 -> avg time: 1.048 ns/byte, 11.000 ns/call
average length 50 -> avg time: 0.337 ns/byte, 17.000 ns/call
average length 100 -> avg time: 0.299 ns/byte, 30.000 ns/call
average length 500 -> avg time: 0.202 ns/byte, 101.000 ns/call
average length 1000 -> avg time: 0.188 ns/byte, 188.000 ns/call
average length 5000 -> avg time: 0.174 ns/byte, 868.000 ns/call
average length 10000 -> avg time: 0.172 ns/byte, 1716.000 ns/call
average length 1000000 -> avg time: 0.172 ns/byte, 172000.000 ns/call





share|improve this answer

























  • Wouldn't it still be better for the inlined version to use the same optimizations as the library strlen, giving the best of both worlds?

    – Daniel H
    1 hour ago






  • 1





    It would, but the hand optimized version in the C library might be larger and more complicated to inline. I have not looked into this recently, but there used to be a mix of complex platform specific macros in <string.h> and hard coded optimisations in the gcc code generator. Definitely still room for improvement on intel targets.

    – chqrlie
    1 hour ago











  • Does it change if you use -march=native -mtune=native?

    – Deduplicator
    52 mins ago











  • Note that the GNU C library function for strlen() is likely optimised for extremely large strings (that no sane programmer will care about) at the expense of performance for small strings (that are extremely common); and the optimisations done by the library version should never be done. The problem here is that the OP's code doesn't keep track of the string's length itself (e.g. with an int len; variable) and should not have used strlen() at all, making the code so bad for performance that "optimised for something no sane programmer would care about" actually helped.

    – Brendan
    49 mins ago












  • @Brendan: the OP is trying to benchmark strlen. He does focus the benchmark on insanely long strings for which the C library strlen outperforms inline expansion hands down. I improved this benchmark and tested various string lengths. It appears from the benchmarks on linux with gcc (Debian 4.7.2-5) 4.7.2 running on an Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz that the inline code generated by -O1 is always slower, by as much as a factor of 10 for moderately long strings, while -O2 is only slightly faster than the libc strlen for very short strings and half as fast for longer strings.

    – chqrlie
    25 mins ago















5














Testing your code on Godbolt's Compiler Explorer provides this explanation:



  • at -O0 or without optimisations, the generated code call the C library function strlen

  • at -O1 the generated code uses a simple inline expansion using a rep scasb instruction.

  • at -O2 and above, the generated code uses a more elaborate inline expansion.

Benchmarking your code repeatedly shows a substantial variation from one run to another, but increasing the number of iterations shows that:



  • the -O1 code is much slower than the C library implementation: 32240 vs 3090

  • the -O2 code is faster than the -O1 but still substantially slower than the C ibrary code: 8570 vs 3090.

This behavior is specific to gcc and the glibc. The same test on OS/X with clang and Apple's Libc does not show a significant difference, which is not a surprise as Godbolt shows that clang generates a call to the C library strlen at all optimisation levels.



This could be considered a bug in gcc/glibc but more extensive benchmarking might show that the overhead of calling strlen has a more important impact than the lack of performance of the inline code for small strings. The strings on which you benchmark are uncommonly large, so focusing the benchmark on ultra-long strings might not give meaningful results.



I updated the benchmark for smaller strings and it shows similar performance for string lengths varying from 0 to 100 at -O0 and -O2 but still a much worse performance at -O1, 3 times slower.



Here is the updated code:



#include <stdlib.h>
#include <string.h>
#include <time.h>

void benchmark(int repeat, int minlen, int maxlen)
char *s = malloc(maxlen + 1);
memset(s, 'A', minlen);
long long bytes = 0, calls = 0;
clock_t clk = clock();
for (int n = 0; n < repeat; n++)
for (int i = minlen; i < maxlen; ++i)
bytes += i + 1;
calls += 1;
s[i] = '';
s[strlen(s)] = 'A';


clk = clock() - clk;
free(s);
double avglen = (minlen + maxlen - 1) / 2.0;
double ns = (double)clk * 1e9 / CLOCKS_PER_SEC;
printf("average length %7.0f -> avg time: %7.3f ns/byte, %7.3f ns/calln",
avglen, ns / bytes, ns / calls);


int main()
benchmark(10000000, 0, 1);
benchmark(1000000, 0, 10);
benchmark(1000000, 5, 15);
benchmark(100000, 0, 100);
benchmark(100000, 50, 150);
benchmark(10000, 0, 1000);
benchmark(10000, 500, 1500);
benchmark(1000, 0, 10000);
benchmark(1000, 5000, 15000);
benchmark(100, 1000000 - 50, 1000000 + 50);
return 0;



Here is the output:




chqrlie> gcc -std=c99 -O0 benchstrlen.c && ./a.out
average length 0 -> avg time: 14.000 ns/byte, 14.000 ns/call
average length 4 -> avg time: 2.364 ns/byte, 13.000 ns/call
average length 10 -> avg time: 1.238 ns/byte, 13.000 ns/call
average length 50 -> avg time: 0.317 ns/byte, 16.000 ns/call
average length 100 -> avg time: 0.169 ns/byte, 17.000 ns/call
average length 500 -> avg time: 0.074 ns/byte, 37.000 ns/call
average length 1000 -> avg time: 0.068 ns/byte, 68.000 ns/call
average length 5000 -> avg time: 0.064 ns/byte, 318.000 ns/call
average length 10000 -> avg time: 0.062 ns/byte, 622.000 ns/call
average length 1000000 -> avg time: 0.062 ns/byte, 62000.000 ns/call
chqrlie> gcc -std=c99 -O1 benchstrlen.c && ./a.out
average length 0 -> avg time: 20.000 ns/byte, 20.000 ns/call
average length 4 -> avg time: 3.818 ns/byte, 21.000 ns/call
average length 10 -> avg time: 2.190 ns/byte, 23.000 ns/call
average length 50 -> avg time: 0.990 ns/byte, 50.000 ns/call
average length 100 -> avg time: 0.816 ns/byte, 82.000 ns/call
average length 500 -> avg time: 0.679 ns/byte, 340.000 ns/call
average length 1000 -> avg time: 0.664 ns/byte, 664.000 ns/call
average length 5000 -> avg time: 0.651 ns/byte, 3254.000 ns/call
average length 10000 -> avg time: 0.649 ns/byte, 6491.000 ns/call
average length 1000000 -> avg time: 0.648 ns/byte, 648000.000 ns/call
chqrlie> gcc -std=c99 -O2 benchstrlen.c && ./a.out
average length 0 -> avg time: 10.000 ns/byte, 10.000 ns/call
average length 4 -> avg time: 2.000 ns/byte, 11.000 ns/call
average length 10 -> avg time: 1.048 ns/byte, 11.000 ns/call
average length 50 -> avg time: 0.337 ns/byte, 17.000 ns/call
average length 100 -> avg time: 0.299 ns/byte, 30.000 ns/call
average length 500 -> avg time: 0.202 ns/byte, 101.000 ns/call
average length 1000 -> avg time: 0.188 ns/byte, 188.000 ns/call
average length 5000 -> avg time: 0.174 ns/byte, 868.000 ns/call
average length 10000 -> avg time: 0.172 ns/byte, 1716.000 ns/call
average length 1000000 -> avg time: 0.172 ns/byte, 172000.000 ns/call





share|improve this answer

























  • Wouldn't it still be better for the inlined version to use the same optimizations as the library strlen, giving the best of both worlds?

    – Daniel H
    1 hour ago






  • 1





    It would, but the hand optimized version in the C library might be larger and more complicated to inline. I have not looked into this recently, but there used to be a mix of complex platform specific macros in <string.h> and hard coded optimisations in the gcc code generator. Definitely still room for improvement on intel targets.

    – chqrlie
    1 hour ago











  • Does it change if you use -march=native -mtune=native?

    – Deduplicator
    52 mins ago











  • Note that the GNU C library function for strlen() is likely optimised for extremely large strings (that no sane programmer will care about) at the expense of performance for small strings (that are extremely common); and the optimisations done by the library version should never be done. The problem here is that the OP's code doesn't keep track of the string's length itself (e.g. with an int len; variable) and should not have used strlen() at all, making the code so bad for performance that "optimised for something no sane programmer would care about" actually helped.

    – Brendan
    49 mins ago












  • @Brendan: the OP is trying to benchmark strlen. He does focus the benchmark on insanely long strings for which the C library strlen outperforms inline expansion hands down. I improved this benchmark and tested various string lengths. It appears from the benchmarks on linux with gcc (Debian 4.7.2-5) 4.7.2 running on an Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz that the inline code generated by -O1 is always slower, by as much as a factor of 10 for moderately long strings, while -O2 is only slightly faster than the libc strlen for very short strings and half as fast for longer strings.

    – chqrlie
    25 mins ago













5












5








5







Testing your code on Godbolt's Compiler Explorer provides this explanation:



  • at -O0 or without optimisations, the generated code call the C library function strlen

  • at -O1 the generated code uses a simple inline expansion using a rep scasb instruction.

  • at -O2 and above, the generated code uses a more elaborate inline expansion.

Benchmarking your code repeatedly shows a substantial variation from one run to another, but increasing the number of iterations shows that:



  • the -O1 code is much slower than the C library implementation: 32240 vs 3090

  • the -O2 code is faster than the -O1 but still substantially slower than the C ibrary code: 8570 vs 3090.

This behavior is specific to gcc and the glibc. The same test on OS/X with clang and Apple's Libc does not show a significant difference, which is not a surprise as Godbolt shows that clang generates a call to the C library strlen at all optimisation levels.



This could be considered a bug in gcc/glibc but more extensive benchmarking might show that the overhead of calling strlen has a more important impact than the lack of performance of the inline code for small strings. The strings on which you benchmark are uncommonly large, so focusing the benchmark on ultra-long strings might not give meaningful results.



I updated the benchmark for smaller strings and it shows similar performance for string lengths varying from 0 to 100 at -O0 and -O2 but still a much worse performance at -O1, 3 times slower.



Here is the updated code:



#include <stdlib.h>
#include <string.h>
#include <time.h>

void benchmark(int repeat, int minlen, int maxlen)
char *s = malloc(maxlen + 1);
memset(s, 'A', minlen);
long long bytes = 0, calls = 0;
clock_t clk = clock();
for (int n = 0; n < repeat; n++)
for (int i = minlen; i < maxlen; ++i)
bytes += i + 1;
calls += 1;
s[i] = '';
s[strlen(s)] = 'A';


clk = clock() - clk;
free(s);
double avglen = (minlen + maxlen - 1) / 2.0;
double ns = (double)clk * 1e9 / CLOCKS_PER_SEC;
printf("average length %7.0f -> avg time: %7.3f ns/byte, %7.3f ns/calln",
avglen, ns / bytes, ns / calls);


int main()
benchmark(10000000, 0, 1);
benchmark(1000000, 0, 10);
benchmark(1000000, 5, 15);
benchmark(100000, 0, 100);
benchmark(100000, 50, 150);
benchmark(10000, 0, 1000);
benchmark(10000, 500, 1500);
benchmark(1000, 0, 10000);
benchmark(1000, 5000, 15000);
benchmark(100, 1000000 - 50, 1000000 + 50);
return 0;



Here is the output:




chqrlie> gcc -std=c99 -O0 benchstrlen.c && ./a.out
average length 0 -> avg time: 14.000 ns/byte, 14.000 ns/call
average length 4 -> avg time: 2.364 ns/byte, 13.000 ns/call
average length 10 -> avg time: 1.238 ns/byte, 13.000 ns/call
average length 50 -> avg time: 0.317 ns/byte, 16.000 ns/call
average length 100 -> avg time: 0.169 ns/byte, 17.000 ns/call
average length 500 -> avg time: 0.074 ns/byte, 37.000 ns/call
average length 1000 -> avg time: 0.068 ns/byte, 68.000 ns/call
average length 5000 -> avg time: 0.064 ns/byte, 318.000 ns/call
average length 10000 -> avg time: 0.062 ns/byte, 622.000 ns/call
average length 1000000 -> avg time: 0.062 ns/byte, 62000.000 ns/call
chqrlie> gcc -std=c99 -O1 benchstrlen.c && ./a.out
average length 0 -> avg time: 20.000 ns/byte, 20.000 ns/call
average length 4 -> avg time: 3.818 ns/byte, 21.000 ns/call
average length 10 -> avg time: 2.190 ns/byte, 23.000 ns/call
average length 50 -> avg time: 0.990 ns/byte, 50.000 ns/call
average length 100 -> avg time: 0.816 ns/byte, 82.000 ns/call
average length 500 -> avg time: 0.679 ns/byte, 340.000 ns/call
average length 1000 -> avg time: 0.664 ns/byte, 664.000 ns/call
average length 5000 -> avg time: 0.651 ns/byte, 3254.000 ns/call
average length 10000 -> avg time: 0.649 ns/byte, 6491.000 ns/call
average length 1000000 -> avg time: 0.648 ns/byte, 648000.000 ns/call
chqrlie> gcc -std=c99 -O2 benchstrlen.c && ./a.out
average length 0 -> avg time: 10.000 ns/byte, 10.000 ns/call
average length 4 -> avg time: 2.000 ns/byte, 11.000 ns/call
average length 10 -> avg time: 1.048 ns/byte, 11.000 ns/call
average length 50 -> avg time: 0.337 ns/byte, 17.000 ns/call
average length 100 -> avg time: 0.299 ns/byte, 30.000 ns/call
average length 500 -> avg time: 0.202 ns/byte, 101.000 ns/call
average length 1000 -> avg time: 0.188 ns/byte, 188.000 ns/call
average length 5000 -> avg time: 0.174 ns/byte, 868.000 ns/call
average length 10000 -> avg time: 0.172 ns/byte, 1716.000 ns/call
average length 1000000 -> avg time: 0.172 ns/byte, 172000.000 ns/call





share|improve this answer















Testing your code on Godbolt's Compiler Explorer provides this explanation:



  • at -O0 or without optimisations, the generated code call the C library function strlen

  • at -O1 the generated code uses a simple inline expansion using a rep scasb instruction.

  • at -O2 and above, the generated code uses a more elaborate inline expansion.

Benchmarking your code repeatedly shows a substantial variation from one run to another, but increasing the number of iterations shows that:



  • the -O1 code is much slower than the C library implementation: 32240 vs 3090

  • the -O2 code is faster than the -O1 but still substantially slower than the C ibrary code: 8570 vs 3090.

This behavior is specific to gcc and the glibc. The same test on OS/X with clang and Apple's Libc does not show a significant difference, which is not a surprise as Godbolt shows that clang generates a call to the C library strlen at all optimisation levels.



This could be considered a bug in gcc/glibc but more extensive benchmarking might show that the overhead of calling strlen has a more important impact than the lack of performance of the inline code for small strings. The strings on which you benchmark are uncommonly large, so focusing the benchmark on ultra-long strings might not give meaningful results.



I updated the benchmark for smaller strings and it shows similar performance for string lengths varying from 0 to 100 at -O0 and -O2 but still a much worse performance at -O1, 3 times slower.



Here is the updated code:



#include <stdlib.h>
#include <string.h>
#include <time.h>

void benchmark(int repeat, int minlen, int maxlen)
char *s = malloc(maxlen + 1);
memset(s, 'A', minlen);
long long bytes = 0, calls = 0;
clock_t clk = clock();
for (int n = 0; n < repeat; n++)
for (int i = minlen; i < maxlen; ++i)
bytes += i + 1;
calls += 1;
s[i] = '';
s[strlen(s)] = 'A';


clk = clock() - clk;
free(s);
double avglen = (minlen + maxlen - 1) / 2.0;
double ns = (double)clk * 1e9 / CLOCKS_PER_SEC;
printf("average length %7.0f -> avg time: %7.3f ns/byte, %7.3f ns/calln",
avglen, ns / bytes, ns / calls);


int main()
benchmark(10000000, 0, 1);
benchmark(1000000, 0, 10);
benchmark(1000000, 5, 15);
benchmark(100000, 0, 100);
benchmark(100000, 50, 150);
benchmark(10000, 0, 1000);
benchmark(10000, 500, 1500);
benchmark(1000, 0, 10000);
benchmark(1000, 5000, 15000);
benchmark(100, 1000000 - 50, 1000000 + 50);
return 0;



Here is the output:




chqrlie> gcc -std=c99 -O0 benchstrlen.c && ./a.out
average length 0 -> avg time: 14.000 ns/byte, 14.000 ns/call
average length 4 -> avg time: 2.364 ns/byte, 13.000 ns/call
average length 10 -> avg time: 1.238 ns/byte, 13.000 ns/call
average length 50 -> avg time: 0.317 ns/byte, 16.000 ns/call
average length 100 -> avg time: 0.169 ns/byte, 17.000 ns/call
average length 500 -> avg time: 0.074 ns/byte, 37.000 ns/call
average length 1000 -> avg time: 0.068 ns/byte, 68.000 ns/call
average length 5000 -> avg time: 0.064 ns/byte, 318.000 ns/call
average length 10000 -> avg time: 0.062 ns/byte, 622.000 ns/call
average length 1000000 -> avg time: 0.062 ns/byte, 62000.000 ns/call
chqrlie> gcc -std=c99 -O1 benchstrlen.c && ./a.out
average length 0 -> avg time: 20.000 ns/byte, 20.000 ns/call
average length 4 -> avg time: 3.818 ns/byte, 21.000 ns/call
average length 10 -> avg time: 2.190 ns/byte, 23.000 ns/call
average length 50 -> avg time: 0.990 ns/byte, 50.000 ns/call
average length 100 -> avg time: 0.816 ns/byte, 82.000 ns/call
average length 500 -> avg time: 0.679 ns/byte, 340.000 ns/call
average length 1000 -> avg time: 0.664 ns/byte, 664.000 ns/call
average length 5000 -> avg time: 0.651 ns/byte, 3254.000 ns/call
average length 10000 -> avg time: 0.649 ns/byte, 6491.000 ns/call
average length 1000000 -> avg time: 0.648 ns/byte, 648000.000 ns/call
chqrlie> gcc -std=c99 -O2 benchstrlen.c && ./a.out
average length 0 -> avg time: 10.000 ns/byte, 10.000 ns/call
average length 4 -> avg time: 2.000 ns/byte, 11.000 ns/call
average length 10 -> avg time: 1.048 ns/byte, 11.000 ns/call
average length 50 -> avg time: 0.337 ns/byte, 17.000 ns/call
average length 100 -> avg time: 0.299 ns/byte, 30.000 ns/call
average length 500 -> avg time: 0.202 ns/byte, 101.000 ns/call
average length 1000 -> avg time: 0.188 ns/byte, 188.000 ns/call
average length 5000 -> avg time: 0.174 ns/byte, 868.000 ns/call
average length 10000 -> avg time: 0.172 ns/byte, 1716.000 ns/call
average length 1000000 -> avg time: 0.172 ns/byte, 172000.000 ns/call






share|improve this answer














share|improve this answer



share|improve this answer








edited 1 hour ago

























answered 2 hours ago









chqrliechqrlie

62.9k848107




62.9k848107












  • Wouldn't it still be better for the inlined version to use the same optimizations as the library strlen, giving the best of both worlds?

    – Daniel H
    1 hour ago






  • 1





    It would, but the hand optimized version in the C library might be larger and more complicated to inline. I have not looked into this recently, but there used to be a mix of complex platform specific macros in <string.h> and hard coded optimisations in the gcc code generator. Definitely still room for improvement on intel targets.

    – chqrlie
    1 hour ago











  • Does it change if you use -march=native -mtune=native?

    – Deduplicator
    52 mins ago











  • Note that the GNU C library function for strlen() is likely optimised for extremely large strings (that no sane programmer will care about) at the expense of performance for small strings (that are extremely common); and the optimisations done by the library version should never be done. The problem here is that the OP's code doesn't keep track of the string's length itself (e.g. with an int len; variable) and should not have used strlen() at all, making the code so bad for performance that "optimised for something no sane programmer would care about" actually helped.

    – Brendan
    49 mins ago












  • @Brendan: the OP is trying to benchmark strlen. He does focus the benchmark on insanely long strings for which the C library strlen outperforms inline expansion hands down. I improved this benchmark and tested various string lengths. It appears from the benchmarks on linux with gcc (Debian 4.7.2-5) 4.7.2 running on an Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz that the inline code generated by -O1 is always slower, by as much as a factor of 10 for moderately long strings, while -O2 is only slightly faster than the libc strlen for very short strings and half as fast for longer strings.

    – chqrlie
    25 mins ago

















  • Wouldn't it still be better for the inlined version to use the same optimizations as the library strlen, giving the best of both worlds?

    – Daniel H
    1 hour ago






  • 1





    It would, but the hand optimized version in the C library might be larger and more complicated to inline. I have not looked into this recently, but there used to be a mix of complex platform specific macros in <string.h> and hard coded optimisations in the gcc code generator. Definitely still room for improvement on intel targets.

    – chqrlie
    1 hour ago











  • Does it change if you use -march=native -mtune=native?

    – Deduplicator
    52 mins ago











  • Note that the GNU C library function for strlen() is likely optimised for extremely large strings (that no sane programmer will care about) at the expense of performance for small strings (that are extremely common); and the optimisations done by the library version should never be done. The problem here is that the OP's code doesn't keep track of the string's length itself (e.g. with an int len; variable) and should not have used strlen() at all, making the code so bad for performance that "optimised for something no sane programmer would care about" actually helped.

    – Brendan
    49 mins ago












  • @Brendan: the OP is trying to benchmark strlen. He does focus the benchmark on insanely long strings for which the C library strlen outperforms inline expansion hands down. I improved this benchmark and tested various string lengths. It appears from the benchmarks on linux with gcc (Debian 4.7.2-5) 4.7.2 running on an Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz that the inline code generated by -O1 is always slower, by as much as a factor of 10 for moderately long strings, while -O2 is only slightly faster than the libc strlen for very short strings and half as fast for longer strings.

    – chqrlie
    25 mins ago
















Wouldn't it still be better for the inlined version to use the same optimizations as the library strlen, giving the best of both worlds?

– Daniel H
1 hour ago





Wouldn't it still be better for the inlined version to use the same optimizations as the library strlen, giving the best of both worlds?

– Daniel H
1 hour ago




1




1





It would, but the hand optimized version in the C library might be larger and more complicated to inline. I have not looked into this recently, but there used to be a mix of complex platform specific macros in <string.h> and hard coded optimisations in the gcc code generator. Definitely still room for improvement on intel targets.

– chqrlie
1 hour ago





It would, but the hand optimized version in the C library might be larger and more complicated to inline. I have not looked into this recently, but there used to be a mix of complex platform specific macros in <string.h> and hard coded optimisations in the gcc code generator. Definitely still room for improvement on intel targets.

– chqrlie
1 hour ago













Does it change if you use -march=native -mtune=native?

– Deduplicator
52 mins ago





Does it change if you use -march=native -mtune=native?

– Deduplicator
52 mins ago













Note that the GNU C library function for strlen() is likely optimised for extremely large strings (that no sane programmer will care about) at the expense of performance for small strings (that are extremely common); and the optimisations done by the library version should never be done. The problem here is that the OP's code doesn't keep track of the string's length itself (e.g. with an int len; variable) and should not have used strlen() at all, making the code so bad for performance that "optimised for something no sane programmer would care about" actually helped.

– Brendan
49 mins ago






Note that the GNU C library function for strlen() is likely optimised for extremely large strings (that no sane programmer will care about) at the expense of performance for small strings (that are extremely common); and the optimisations done by the library version should never be done. The problem here is that the OP's code doesn't keep track of the string's length itself (e.g. with an int len; variable) and should not have used strlen() at all, making the code so bad for performance that "optimised for something no sane programmer would care about" actually helped.

– Brendan
49 mins ago














@Brendan: the OP is trying to benchmark strlen. He does focus the benchmark on insanely long strings for which the C library strlen outperforms inline expansion hands down. I improved this benchmark and tested various string lengths. It appears from the benchmarks on linux with gcc (Debian 4.7.2-5) 4.7.2 running on an Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz that the inline code generated by -O1 is always slower, by as much as a factor of 10 for moderately long strings, while -O2 is only slightly faster than the libc strlen for very short strings and half as fast for longer strings.

– chqrlie
25 mins ago





@Brendan: the OP is trying to benchmark strlen. He does focus the benchmark on insanely long strings for which the C library strlen outperforms inline expansion hands down. I improved this benchmark and tested various string lengths. It appears from the benchmarks on linux with gcc (Debian 4.7.2-5) 4.7.2 running on an Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz that the inline code generated by -O1 is always slower, by as much as a factor of 10 for moderately long strings, while -O2 is only slightly faster than the libc strlen for very short strings and half as fast for longer strings.

– chqrlie
25 mins ago



















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55563598%2fwhy-is-this-code-6-5x-slower-with-optimizations-enabled%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Log på Navigationsmenu

Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5