How to compute a Jacobian using polar coordinates?How do I convert a vector field in Cartesian coordinates to spherical coordinates?gradient in polar coordinate by changing gradient in Cartesian coordinateJacobian of the change of variablesJacobian Determinant of Polar-Coordinate TransformationPolar coordinates and Jacobian of $frac12 r $Elementary JacobianPartial derivative in polar coordinatesHow do I prove this identity involving polar coordinates and $nabla$?What is the Jacobian in this transformationDoubt about differentia operatorl in polar coordinates
What is /etc/mtab in Linux?
Is there an efficient way for synchronising audio events real-time with LEDs using an MCU?
Is it appropriate to mention a relatable company blog post when you're asked about the company?
Bright yellow or light yellow?
How to translate "red flag" into Spanish?
Arriving in Atlanta (after US Preclearance in Dublin). Will I go through TSA security in Atlanta to transfer to a connecting flight?
What *exactly* is electrical current, voltage, and resistance?
How would you suggest I follow up with coworkers about our deadline that's today?
What helicopter has the most rotor blades?
Variable does not exist: sObjectType (Task.sObjectType)
What were wait-states, and why was it only an issue for PCs?
RIP Packet Format
Are these square matrices always diagonalisable?
How do I deal with an erroneously large refund?
Test if all elements of a Foldable are the same
Israeli soda type drink
All ASCII characters with a given bit count
Has a Nobel Peace laureate ever been accused of war crimes?
What's the difference between using dependency injection with a container and using a service locator?
Did war bonds have better investment alternatives during WWII?
Where to find documentation for `whois` command options?
/bin/ls sorts differently than just ls
Married in secret, can marital status in passport be changed at a later date?
Does using the Inspiration rules for character defects encourage My Guy Syndrome?
How to compute a Jacobian using polar coordinates?
How do I convert a vector field in Cartesian coordinates to spherical coordinates?gradient in polar coordinate by changing gradient in Cartesian coordinateJacobian of the change of variablesJacobian Determinant of Polar-Coordinate TransformationPolar coordinates and Jacobian of $frac12 r $Elementary JacobianPartial derivative in polar coordinatesHow do I prove this identity involving polar coordinates and $nabla$?What is the Jacobian in this transformationDoubt about differentia operatorl in polar coordinates
$begingroup$
Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
$$
F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$
Its Jacobian matrix is
$$tag1
beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$
The following alternative computation is wrong at (!) and (!!), and I cannot see why.
Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$
The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
$$
beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$
which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.
Can you help me spot the mistake?
calculus multivariable-calculus differential-geometry
$endgroup$
|
$begingroup$
Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
$$
F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$
Its Jacobian matrix is
$$tag1
beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$
The following alternative computation is wrong at (!) and (!!), and I cannot see why.
Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$
The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
$$
beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$
which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.
Can you help me spot the mistake?
calculus multivariable-calculus differential-geometry
$endgroup$
|
$begingroup$
Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
$$
F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$
Its Jacobian matrix is
$$tag1
beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$
The following alternative computation is wrong at (!) and (!!), and I cannot see why.
Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$
The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
$$
beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$
which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.
Can you help me spot the mistake?
calculus multivariable-calculus differential-geometry
$endgroup$
Consider the transformation $F$ of $mathbb R^2setminus(0,0)$ onto itself defined as
$$
F(x, y):=left( fracxx^2+y^2, fracyx^2+y^2right).$$
Its Jacobian matrix is
$$tag1
beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrix,quad textand its determinant equals frac-1(x^2+y^2)^2.$$
The following alternative computation is wrong at (!) and (!!), and I cannot see why.
Let $phicolon (0, infty)times (-pi, pi)to mathbb R^2$ be the map $$phi(r, theta) =(rcos theta, rsin theta).$$ Let moreover $$tag2tildeF:=phi^-1circ Fcirc phi;$$ then, by an easy direct computation, $$tildeF(r, theta)=left( frac1r, thetaright).$$The Jacobian matrix of $tildeF$ is, thus, $$tag!beginbmatrix frac-1r^2 & 0 \ 0 & 1endbmatrix , quad textand its determinant equals frac-1r^2.$$On the other hand, by (2) and by the chain rule, the Jacobian determinants of $F$ and $tildeF$ are equal. We conclude that the Jacobian determinant of $F$ is $$tag!! frac-1r^2=frac-1x^2+y^2.$$
The result (!!) is off by a factor of $r^-2$ from the correct one, which is given in (1). Equation (!) must also be wrong. Indeed, computing the Jacobian matrix from (2) using the chain rule I obtain the result
$$
beginbmatrix fracxsqrtx^2+y^2 & fracysqrtx^2+y^2 \ -fracyx^2+y^2 & fracxx^2+y^2endbmatrix beginbmatrix fracy^2-x^2(x^2+y^2)^2 & -frac2xy(x^2+y^2)^2 \ -frac2xy(x^2+y^2)^2 & fracx^2-y^2(x^2+y^2)^2 endbmatrixbeginbmatrix costheta & -rsintheta \ sin theta & rcos thetaendbmatrix = beginbmatrix -frac1r^2 & 0 \ 0 & frac1r^2endbmatrix,$$
which is different from the matrix in (!), and which gives the correct determinant of $-1/r^4$, as it should be.
Can you help me spot the mistake?
calculus multivariable-calculus differential-geometry
calculus multivariable-calculus differential-geometry
edited 3 hours ago
Tengu
2,68411021
2,68411021
asked 4 hours ago
Giuseppe NegroGiuseppe Negro
17.7k332128
17.7k332128
|
|
2 Answers
2
active
oldest
votes
$begingroup$
The Jacobians of the two functions aren't equal by the chain rule.
In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$
$endgroup$
|
$begingroup$
I don't think there is any contradiction here.
Consider the volume form
$$ omega_rm Cart = dx wedge dy.$$
Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
$$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$
Now consider the volume form
$$ omega_rm Polar = dr wedge dtheta.$$
Your second calculation shows that
$$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$
We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
$$ omega_rm Cart = r omega_rm Polar,$$
we have:
beginalign
F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
endalign
which is consistent with the first calculation!
As for the application of the chain rule, we have:
$$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$
The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.
This is equal to
$$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
which is not the inverse of $(Dphi)|_(r, theta)$.
$endgroup$
$begingroup$
I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
$endgroup$
– Giuseppe Negro
2 hours ago
|
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
The Jacobians of the two functions aren't equal by the chain rule.
In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$
$endgroup$
|
$begingroup$
The Jacobians of the two functions aren't equal by the chain rule.
In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$
$endgroup$
|
$begingroup$
The Jacobians of the two functions aren't equal by the chain rule.
In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$
$endgroup$
The Jacobians of the two functions aren't equal by the chain rule.
In actual fact, $D(phi(frac1r, costheta)) × DtildeF(r, theta)= DF times D(phi(r, theta))$
answered 3 hours ago
George DewhirstGeorge Dewhirst
1,72515
1,72515
|
|
$begingroup$
I don't think there is any contradiction here.
Consider the volume form
$$ omega_rm Cart = dx wedge dy.$$
Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
$$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$
Now consider the volume form
$$ omega_rm Polar = dr wedge dtheta.$$
Your second calculation shows that
$$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$
We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
$$ omega_rm Cart = r omega_rm Polar,$$
we have:
beginalign
F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
endalign
which is consistent with the first calculation!
As for the application of the chain rule, we have:
$$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$
The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.
This is equal to
$$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
which is not the inverse of $(Dphi)|_(r, theta)$.
$endgroup$
$begingroup$
I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
$endgroup$
– Giuseppe Negro
2 hours ago
|
$begingroup$
I don't think there is any contradiction here.
Consider the volume form
$$ omega_rm Cart = dx wedge dy.$$
Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
$$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$
Now consider the volume form
$$ omega_rm Polar = dr wedge dtheta.$$
Your second calculation shows that
$$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$
We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
$$ omega_rm Cart = r omega_rm Polar,$$
we have:
beginalign
F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
endalign
which is consistent with the first calculation!
As for the application of the chain rule, we have:
$$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$
The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.
This is equal to
$$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
which is not the inverse of $(Dphi)|_(r, theta)$.
$endgroup$
$begingroup$
I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
$endgroup$
– Giuseppe Negro
2 hours ago
|
$begingroup$
I don't think there is any contradiction here.
Consider the volume form
$$ omega_rm Cart = dx wedge dy.$$
Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
$$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$
Now consider the volume form
$$ omega_rm Polar = dr wedge dtheta.$$
Your second calculation shows that
$$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$
We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
$$ omega_rm Cart = r omega_rm Polar,$$
we have:
beginalign
F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
endalign
which is consistent with the first calculation!
As for the application of the chain rule, we have:
$$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$
The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.
This is equal to
$$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
which is not the inverse of $(Dphi)|_(r, theta)$.
$endgroup$
I don't think there is any contradiction here.
Consider the volume form
$$ omega_rm Cart = dx wedge dy.$$
Your first calculation shows that the pullback $F^star(omega_rm Cart)$ is given by
$$ F^star(omega_rm Cart) = - frac1(x^2+y^2)^2omega_rm Cart.$$
Now consider the volume form
$$ omega_rm Polar = dr wedge dtheta.$$
Your second calculation shows that
$$ F^star(omega_rm Polar)=-frac 1 r^2 omega_rm Polar. $$
We can use this to recompute $F^star(omega_rm Cart)$. In view of the fact that
$$ omega_rm Cart = r omega_rm Polar,$$
we have:
beginalign
F^star(omega_rm Cart) &= F^star(romega_rm Polar) \ &= F^star(r) F^star(omega_rm Polar) \ &= frac 1 r left( - frac 1 r^2omega_rm Polar right) \ &= - frac1r^4 left(romega_rm Polar right) \ &= - frac 1 r^4 omega_rm Cart
endalign
which is consistent with the first calculation!
As for the application of the chain rule, we have:
$$ (Dbar F)|_(r, theta) = D(phi^-1)|_Fcirc phi(r, theta) (DF)|_phi(r, theta) (Dphi)|_(r, theta)$$
The key point is that you must evaluate $D(phi^-1)$ at the point $left(frac x (x^2 +y^2), frac y (x^2 + y^2)right)$, not at the point $(x, y)$.
This is equal to
$$ D(phi^-1)|_Fcirc phi(r, theta) = beginbmatrix fracfracxx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracyx^2 + y^2sqrtleft(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 \ -fracfracyx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2 & fracfracxx^2 + y^2left(fracxx^2 + y^2 right)^2+left( fracyx^2 + y^2right)^2endbmatrix = beginbmatrixcostheta & sin theta \ - rsin theta & rcostheta endbmatrix$$
which is not the inverse of $(Dphi)|_(r, theta)$.
edited 3 hours ago
answered 3 hours ago
Kenny WongKenny Wong
20.1k21442
20.1k21442
$begingroup$
I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
$endgroup$
– Giuseppe Negro
2 hours ago
|
$begingroup$
I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
$endgroup$
– Giuseppe Negro
2 hours ago
$begingroup$
I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
$endgroup$
– Giuseppe Negro
2 hours ago
$begingroup$
I couldn't expect a better answer. You nailed it completely. Also, thank you for suggesting the viewpoint of volume forms; that makes for much slicker computations.
$endgroup$
– Giuseppe Negro
2 hours ago
|