Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy. Unicorn Meta Zoo #1: Why another podcast? Announcing the arrival of Valued Associate #679: Cesar ManaraSuppose for all positive integers $n$, $|x_n-y_n|< frac1n$ Prove that $(x_n)$ is also Cauchy.Proof check for completenessProve that $d_n$ is a Cauchy sequence in $mathbbR$Prove $aX_n +bY_n$ is a Cauchy Sequence.Prove a sequence is a Cauchy and thus convergentIf $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyLet $x_n$ be a Cauchy sequence of rational numbers. Define a new sequence $y_n$ by $y_n = (x_n)(x_n+1)$. Show that $y_n$ is a CS.Let $x_n$ be a Cauchy sequence of real numbers, prove that a new sequence $y_n$, with $y_n$=$x_n^frac13$, is also a Cauchy sequence.$x_n rightarrow x$ iff the modified sequence is Cauchy

Is Diceware more secure than a long passphrase?

What is it called when you ride around on your front wheel?

Retract an already submitted recommendation letter (written for an undergrad student)

Passing args from the bash script to the function in the script

Putting Ant-Man on house arrest

Do I need to protect SFP ports and optics from dust/contaminants? If so, how?

Contradiction proof for inequality of P and NP?

Is there any hidden 'W' sound after 'comment' in : Comment est-elle?

How to not starve gigantic beasts

What's parked in Mil Moscow helicopter plant?

"Whatever a Russian does, they end up making the Kalashnikov gun"? Are there any similar proverbs in English?

Can you stand up from being prone using Skirmisher outside of your turn?

How to open locks without disable device?

Does Feeblemind produce an ongoing magical effect that can be dispelled?

Holes in ElementMesh with ToElementMesh of ImplicitRegion

Would reducing the reference voltage of an ADC have any effect on accuracy?

Why did Israel vote against lifting the American embargo on Cuba?

A faster way to compute the largest prime factor

Co-worker works way more than he should

"My boss was furious with me and I have been fired" vs. "My boss was furious with me and I was fired"

Why do games have consumables?

Is Electric Central Heating worth it if using Solar Panels?

How to avoid introduction cliches

Additive group of local rings



Prove the alternating sum of a decreasing sequence converging to 0 is Cauchy.



Unicorn Meta Zoo #1: Why another podcast?
Announcing the arrival of Valued Associate #679: Cesar ManaraSuppose for all positive integers $n$, $|x_n-y_n|< frac1n$ Prove that $(x_n)$ is also Cauchy.Proof check for completenessProve that $d_n$ is a Cauchy sequence in $mathbbR$Prove $aX_n +bY_n$ is a Cauchy Sequence.Prove a sequence is a Cauchy and thus convergentIf $(x_n)$ and $(y_n)$ are Cauchy sequences, then give a direct argument that $ (x_n + y_n)$ is a Cauchy sequenceIf $x_n$ and $y_n$ are Cauchy then $leftfrac2x_ny_nright$ is CauchyLet $x_n$ be a Cauchy sequence of rational numbers. Define a new sequence $y_n$ by $y_n = (x_n)(x_n+1)$. Show that $y_n$ is a CS.Let $x_n$ be a Cauchy sequence of real numbers, prove that a new sequence $y_n$, with $y_n$=$x_n^frac13$, is also a Cauchy sequence.$x_n rightarrow x$ iff the modified sequence is Cauchy










3












$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    4 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    4 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    1 hour ago











  • $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    3 mins ago
















3












$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    4 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    4 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    1 hour ago











  • $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    3 mins ago














3












3








3


1



$begingroup$


Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.










share|cite|improve this question









$endgroup$




Let $(x_n)$ be a decreasing sequence with $x_n > 0$ for all $n in mathbbN$, and $(x_n) to 0$. Let $(y_n)$ be defined for all $n in mathbbN$ by
$$y_n = x_0 - x_1 + x_2 - cdots + (-1)^n x_n .$$



I want to show, using the $varepsilon$ definition, that $(y_n)$ is Cauchy.



I am trying to find, given $varepsilon > 0$, a real number $N$ such that for all $m$ and $n$ with $m > n > N$, $|y_m - y_n| < varepsilon$.



I have been going backwards to try and find $N$, and have
beginalign*
|y_m - y_n| & = left| (x_0 - x_1 + cdots pm x_m) - (x_0 - x_1 + cdots pm x_n) right| \
|y_m - y_n| & = left| x_n + 1 - x_n + 2 + cdots pm x_m right| \
|y_m - y_n| & leq | x_n + 1 | + | x_n + 2 | + cdots + | x_m | \
|y_m - y_n| & leq ?
endalign*



I do not know how to get a solution from there, and am not sure about the process, particurlary the last step since I feel getting rid of the minuses might prevent me from finding a solution.







real-analysis cauchy-sequences






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 5 hours ago









oranjioranji

666




666







  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    4 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    4 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    1 hour ago











  • $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    3 mins ago













  • 1




    $begingroup$
    Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
    $endgroup$
    – Robert Shore
    4 hours ago










  • $begingroup$
    @RobertShore is my answer okay?
    $endgroup$
    – Subhasis Biswas
    4 hours ago










  • $begingroup$
    @RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
    $endgroup$
    – oranji
    1 hour ago











  • $begingroup$
    I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
    $endgroup$
    – Robert Shore
    3 mins ago








1




1




$begingroup$
Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
$endgroup$
– Robert Shore
4 hours ago




$begingroup$
Because the series is alternating and decreasing, I think you can prove by induction on $m$ that $|y_m-y_n| leq |y_n|$.
$endgroup$
– Robert Shore
4 hours ago












$begingroup$
@RobertShore is my answer okay?
$endgroup$
– Subhasis Biswas
4 hours ago




$begingroup$
@RobertShore is my answer okay?
$endgroup$
– Subhasis Biswas
4 hours ago












$begingroup$
@RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
$endgroup$
– oranji
1 hour ago





$begingroup$
@RobertShore yes I can definitely show that, but it brings me to the same issue with $|y_m| leq |x_0 - x_1 + cdots pm x_m|$, and I am unsure how to proceed from there.
$endgroup$
– oranji
1 hour ago













$begingroup$
I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
$endgroup$
– Robert Shore
3 mins ago





$begingroup$
I meant to say you can prove by induction that $|y_m-y_n| leq |x_n|$. Since $lim x_n=0$, choose $N$ such that $n gt N Rightarrow |x_n| lt epsilon$. Then $|y_m-y_n| leq |x_n| lt epsilon$ so $y_n$ is Cauchy.
$endgroup$
– Robert Shore
3 mins ago











2 Answers
2






active

oldest

votes


















3












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    1 hour ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    1 hour ago


















4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    1 hour ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    1 hour ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3201256%2fprove-the-alternating-sum-of-a-decreasing-sequence-converging-to-0-is-cauchy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









3












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    1 hour ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    1 hour ago















3












$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$












  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    1 hour ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    1 hour ago













3












3








3





$begingroup$

To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$






share|cite|improve this answer











$endgroup$



To see that the sequence of partial sums is Cauchy, you cannot use the triangle inequality directly as you did. A famous counter example here is $sum_k=1^inftyfrac(-1)^kk$.



What you can do is grouping the terms of the partial sums $s_n= sum_j=1^n(-1)^jx_j$ as follows:



  • Let $m = n+k, k,n in mathbbN$

Now, you can write $|s_m - s_n|$ in two different ways:



$$|s_n+k - s_n| = begincases
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-x_n+2i+1)| & k = 2i+1 \
|x_n+1 - (x_n+2-x_n+3) - cdots - (x_n+2i-2-x_n+2i-1) - x_2i| & k = 2i \
endcases
$$



$$|s_n+k - s_n| = begincases
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) + x_n+2i+1| & k = 2i+1 \
|(x_n+1 - x_n+2) + cdots + (x_n+2i-1-x_n+2i) | & k = 2i \
endcases
$$



Using the fact that $x_n searrow 0$, it follows immediately that for all $k in mathbbN$ holds
$$|s_n+k - s_n| leq x_n+1$$



Hence, for $epsilon > 0$ choose $N_epsilon$ such that $x_N_epsilon < epsilon$. Then, for all $m> n > N_epsilon$ you have
$$|s_m - s_n| leq x_n+1 leq x_N_epsilon < epsilon$$







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 1 hour ago

























answered 1 hour ago









trancelocationtrancelocation

14.6k1929




14.6k1929











  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    1 hour ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    1 hour ago
















  • $begingroup$
    This is exactly what I was about to do.
    $endgroup$
    – Subhasis Biswas
    1 hour ago






  • 1




    $begingroup$
    @SubhasisBiswas So, I did it for you :-D
    $endgroup$
    – trancelocation
    1 hour ago















$begingroup$
This is exactly what I was about to do.
$endgroup$
– Subhasis Biswas
1 hour ago




$begingroup$
This is exactly what I was about to do.
$endgroup$
– Subhasis Biswas
1 hour ago




1




1




$begingroup$
@SubhasisBiswas So, I did it for you :-D
$endgroup$
– trancelocation
1 hour ago




$begingroup$
@SubhasisBiswas So, I did it for you :-D
$endgroup$
– trancelocation
1 hour ago











4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    1 hour ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    1 hour ago















4












$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    1 hour ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    1 hour ago













4












4








4





$begingroup$

This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.






share|cite|improve this answer









$endgroup$



This is also known as the "Leibnitz's Test".



We write $s_n = x_1-x_2+x_3-...+(-1)^n+1x_n$



$s_2n+2-s_2n=u_2n+1-u_2n+2 geq0$ for all $n$.



$s_2n+1-s_2n-1=-u_2n+u_2n+1 leq 0$



$s_2n =u_1 -(u_2-u_3)-(u_4-u_5)...-u_2n leq u_1$, i.e. a monotone increasing sequence bounded above.



$s_2n+1 =(u_1 -u_2)+(u_3-u_4)+...+u_2n+1 geq u_1-u_2$, i.e. a monotone decreasing sequence bounded below.



Hence, both are convergent subsequences of $(s_n)$. But, we have $lim (s_2n+1-s_2n)=u_2n+1=0$, therefore, they converge to the same limit.



Hence, $(s_n)$ converges, i.e. it is Cauchy.



Note: We conclude that $(s_n)$ converges because the indices of the two subsequences $(s_2n)$ and $(s_2n+1)$ i.e. $U = 2n+1 : n in mathbbN$ and $V = 2n : n in mathbbN$ form a partition of $mathbbN$ and they both converge to the same limit.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 4 hours ago









Subhasis BiswasSubhasis Biswas

628512




628512











  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    1 hour ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    1 hour ago
















  • $begingroup$
    I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
    $endgroup$
    – oranji
    1 hour ago










  • $begingroup$
    I'll edit this answer.
    $endgroup$
    – Subhasis Biswas
    1 hour ago















$begingroup$
I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
$endgroup$
– oranji
1 hour ago




$begingroup$
I want to use the $varepsilon$ definition of a Cauchy sequence, and not the fact that all convergent sequences are Cauchy, which is why I cannot use this solution.
$endgroup$
– oranji
1 hour ago












$begingroup$
I'll edit this answer.
$endgroup$
– Subhasis Biswas
1 hour ago




$begingroup$
I'll edit this answer.
$endgroup$
– Subhasis Biswas
1 hour ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3201256%2fprove-the-alternating-sum-of-a-decreasing-sequence-converging-to-0-is-cauchy%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Log på Navigationsmenu

Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5