What loss function to use when labels are probabilities? Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern) Announcing the arrival of Valued Associate #679: Cesar Manara Unicorn Meta Zoo #1: Why another podcast?Why would neural networks be a particularly good framework for “embodied AI”?Understanding GAN Loss functionHelp with implementing Q-learning for a feedfoward network playing a video gameHow do I implement softmax forward propagation and backpropagation to replace sigmoid in a neural network?Gradient of hinge loss functionHow to understand marginal loglikelihood objective function as loss function (explanation of an article)?What is batch / batch size in neural networks?Comparing and studying Loss FunctionsLoss function spikesPredicting sine using LSTM: Small output range and delayed output?
Why does tar appear to skip file contents when output file is /dev/null?
How does the Nova's Burn power work at the 7-9 level?
90's book, teen horror
Using "nakedly" instead of "with nothing on"
Mortgage adviser recommends a longer term than necessary combined with overpayments
Is drag coefficient lowest at zero angle of attack?
How to market an anarchic city as a tourism spot to people living in civilized areas?
Active filter with series inductor and resistor - do these exist?
What computer would be fastest for Mathematica Home Edition?
Autumning in love
How can players take actions together that are impossible otherwise?
Windows 10: How to Lock (not sleep) laptop on lid close?
What's the point in a preamp?
Complexity of many constant time steps with occasional logarithmic steps
Simulating Exploding Dice
Determine whether or not the following series converge.
Can I add database to AWS RDS MySQL without creating new instance?
Stars Make Stars
How is simplicity better than precision and clarity in prose?
Estimate capacitor parameters
Why is "Captain Marvel" translated as male in Portugal?
Are my PIs rude or am I just being too sensitive?
What did Darwin mean by 'squib' here?
Is above average number of years spent on PhD considered a red flag in future academia or industry positions?
What loss function to use when labels are probabilities?
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)
Announcing the arrival of Valued Associate #679: Cesar Manara
Unicorn Meta Zoo #1: Why another podcast?Why would neural networks be a particularly good framework for “embodied AI”?Understanding GAN Loss functionHelp with implementing Q-learning for a feedfoward network playing a video gameHow do I implement softmax forward propagation and backpropagation to replace sigmoid in a neural network?Gradient of hinge loss functionHow to understand marginal loglikelihood objective function as loss function (explanation of an article)?What is batch / batch size in neural networks?Comparing and studying Loss FunctionsLoss function spikesPredicting sine using LSTM: Small output range and delayed output?
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;
$begingroup$
What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].
It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.
Would something like MSE (after applying softmax) make sense, or is there a better loss function?
neural-networks loss-functions probability-distribution
New contributor
$endgroup$
add a comment |
$begingroup$
What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].
It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.
Would something like MSE (after applying softmax) make sense, or is there a better loss function?
neural-networks loss-functions probability-distribution
New contributor
$endgroup$
add a comment |
$begingroup$
What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].
It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.
Would something like MSE (after applying softmax) make sense, or is there a better loss function?
neural-networks loss-functions probability-distribution
New contributor
$endgroup$
What loss function is most appropriate when training a model with target values that are probabilities? For example, I have a 3-output model with x=[some features] and y=[0.2, 0.3, 0.5].
It seems like something like cross-entropy doesn't make sense here since it assumes that a single target is the correct label.
Would something like MSE (after applying softmax) make sense, or is there a better loss function?
neural-networks loss-functions probability-distribution
neural-networks loss-functions probability-distribution
New contributor
New contributor
New contributor
asked 8 hours ago
Thomas JohnsonThomas Johnson
1133
1133
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.
You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,
$$H(p,q)=-sum_xin X p(x) log q(x).$$
$ $
Note that one-hot labels would mean that
$$
p(x) =
begincases
1 & textif x text is the true label\
0 & textotherwise
endcases$$
which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:
$$H(p,q) = -log q(x_label)$$
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "658"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fai.stackexchange.com%2fquestions%2f11816%2fwhat-loss-function-to-use-when-labels-are-probabilities%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.
You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,
$$H(p,q)=-sum_xin X p(x) log q(x).$$
$ $
Note that one-hot labels would mean that
$$
p(x) =
begincases
1 & textif x text is the true label\
0 & textotherwise
endcases$$
which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:
$$H(p,q) = -log q(x_label)$$
$endgroup$
add a comment |
$begingroup$
Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.
You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,
$$H(p,q)=-sum_xin X p(x) log q(x).$$
$ $
Note that one-hot labels would mean that
$$
p(x) =
begincases
1 & textif x text is the true label\
0 & textotherwise
endcases$$
which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:
$$H(p,q) = -log q(x_label)$$
$endgroup$
add a comment |
$begingroup$
Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.
You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,
$$H(p,q)=-sum_xin X p(x) log q(x).$$
$ $
Note that one-hot labels would mean that
$$
p(x) =
begincases
1 & textif x text is the true label\
0 & textotherwise
endcases$$
which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:
$$H(p,q) = -log q(x_label)$$
$endgroup$
Actually, the cross-entropy loss function would be appropriate here, since it measures the "distance" between a distribution $q$ and the "true" distribution $p$.
You are right, though, that using a loss function called "cross_entropy" in many APIs would be a mistake. This is because these functions, as you said, assume a one-hot label. You would need to use the general cross-entropy function,
$$H(p,q)=-sum_xin X p(x) log q(x).$$
$ $
Note that one-hot labels would mean that
$$
p(x) =
begincases
1 & textif x text is the true label\
0 & textotherwise
endcases$$
which causes the cross-entropy $H(p,q)$ to reduce to the form you're familiar with:
$$H(p,q) = -log q(x_label)$$
answered 7 hours ago
Philip RaeisghasemPhilip Raeisghasem
998119
998119
add a comment |
add a comment |
Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.
Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.
Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.
Thomas Johnson is a new contributor. Be nice, and check out our Code of Conduct.
Thanks for contributing an answer to Artificial Intelligence Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fai.stackexchange.com%2fquestions%2f11816%2fwhat-loss-function-to-use-when-labels-are-probabilities%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown