Why does sin(x) - sin(y) equal this? The Next CEO of Stack OverflowProve that $sin(2A)+sin(2B)+sin(2C)=4sin(A)sin(B)sin(C)$ when $A,B,C$ are angles of a triangleWhy $sin(pi)$ sometimes equal to $0$?Understanding expanding trig identitiesWhy does this always equal $1$?When does this equation $cos(alpha + beta) = cos(alpha) + cos(beta)$ hold?Solve $ cos 2x - sin x +1=0$Writing equation in terms of sin and cosSolve Trigonometric Equality, Multiple Angle TrigonometryFinding relationships between angles, a, b and c when $sin a - sin b - sin c = 0$Does $sin^2x-cos^2x$ equal $cos(2x)$

Small nick on power cord from an electric alarm clock, and copper wiring exposed but intact

Is it a bad idea to plug the other end of ESD strap to wall ground?

Is the 21st century's idea of "freedom of speech" based on precedent?

Free fall ellipse or parabola?

Calculate the Mean mean of two numbers

MT "will strike" & LXX "will watch carefully" (Gen 3:15)?

Can Sri Krishna be called 'a person'?

How to find if SQL server backup is encrypted with TDE without restoring the backup

How badly should I try to prevent a user from XSSing themselves?

Is it possible to create a QR code using text?

Car headlights in a world without electricity

"Eavesdropping" vs "Listen in on"

Prodigo = pro + ago?

Strange use of "whether ... than ..." in official text

Could a dragon use hot air to help it take off?

What steps are necessary to read a Modern SSD in Medieval Europe?

What is the difference between 'contrib' and 'non-free' packages repositories?

Could you use a laser beam as a modulated carrier wave for radio signal?

What is a typical Mizrachi Seder like?

How can a day be of 24 hours?

Creating a script with console commands

What happens if you break a law in another country outside of that country?

How to show a landlord what we have in savings?

Why did the Drakh emissary look so blurred in S04:E11 "Lines of Communication"?



Why does sin(x) - sin(y) equal this?



The Next CEO of Stack OverflowProve that $sin(2A)+sin(2B)+sin(2C)=4sin(A)sin(B)sin(C)$ when $A,B,C$ are angles of a triangleWhy $sin(pi)$ sometimes equal to $0$?Understanding expanding trig identitiesWhy does this always equal $1$?When does this equation $cos(alpha + beta) = cos(alpha) + cos(beta)$ hold?Solve $ cos 2x - sin x +1=0$Writing equation in terms of sin and cosSolve Trigonometric Equality, Multiple Angle TrigonometryFinding relationships between angles, a, b and c when $sin a - sin b - sin c = 0$Does $sin^2x-cos^2x$ equal $cos(2x)$










2












$begingroup$


Why does this equality hold?



$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.



My professor was saying that since



(i) $sin(A+B)=sin A cos B+ sin B cos A$



and



(ii) $sin(A-B) = sin A cos B - sin B cos A$



we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated










share|cite|improve this question







New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
    $endgroup$
    – Newman
    2 hours ago










  • $begingroup$
    After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
    $endgroup$
    – R_D
    2 hours ago















2












$begingroup$


Why does this equality hold?



$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.



My professor was saying that since



(i) $sin(A+B)=sin A cos B+ sin B cos A$



and



(ii) $sin(A-B) = sin A cos B - sin B cos A$



we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated










share|cite|improve this question







New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
    $endgroup$
    – Newman
    2 hours ago










  • $begingroup$
    After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
    $endgroup$
    – R_D
    2 hours ago













2












2








2





$begingroup$


Why does this equality hold?



$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.



My professor was saying that since



(i) $sin(A+B)=sin A cos B+ sin B cos A$



and



(ii) $sin(A-B) = sin A cos B - sin B cos A$



we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated










share|cite|improve this question







New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




Why does this equality hold?



$sin x - sin y = 2 cos(fracx+y2) sin(fracx-y2)$.



My professor was saying that since



(i) $sin(A+B)=sin A cos B+ sin B cos A$



and



(ii) $sin(A-B) = sin A cos B - sin B cos A$



we just let $A=fracx+y2$ and $B=fracx-y2$. But I tried to write this out and could not figure it out. Any help would be appreciated







real-analysis analysis trigonometry






share|cite|improve this question







New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









Ryan DuranRyan Duran

111




111




New contributor




Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Ryan Duran is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
    $endgroup$
    – Newman
    2 hours ago










  • $begingroup$
    After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
    $endgroup$
    – R_D
    2 hours ago
















  • $begingroup$
    Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
    $endgroup$
    – Newman
    2 hours ago










  • $begingroup$
    After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
    $endgroup$
    – R_D
    2 hours ago















$begingroup$
Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
$endgroup$
– Newman
2 hours ago




$begingroup$
Let A and B be as you defined. Then $sin(A+B)=sin(fracx+y2+fracx-y2)$. Evaluate this and use the given identities.
$endgroup$
– Newman
2 hours ago












$begingroup$
After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
$endgroup$
– R_D
2 hours ago




$begingroup$
After substituting for A and B in the equations (i) and (ii) you have to calculate (i) - (ii)
$endgroup$
– R_D
2 hours ago










3 Answers
3






active

oldest

votes


















5












$begingroup$

The main trick is here:



beginalign
colorred x = x+yover2 + x-yover2\[1em]
colorbluey = x+yover2 - x-yover2
endalign



(You may evaluate the right-hand sides of them to verify that these strange equations are correct.)



Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain



beginalign
sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
endalign



All the rest is then only a routine calculation:



beginalign
requireenclose
&= sin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-left[sin left(x+yover2right) cosleft( x-yover2 right) -
sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
&= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
&-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
sin left(x-yover2right) cosleft( x+yover2 right)
\[3em]
&=2sin left(x-yover2right) cosleft( x+yover2 right)\
endalign






share|cite|improve this answer











$endgroup$




















    4












    $begingroup$

    Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.






    share|cite|improve this answer









    $endgroup$




















      2












      $begingroup$

      Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
      Note that $A+B=x$ and $A-B=y$.



      Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.



      To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.






      share|cite|improve this answer









      $endgroup$













        Your Answer





        StackExchange.ifUsing("editor", function ()
        return StackExchange.using("mathjaxEditing", function ()
        StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
        StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
        );
        );
        , "mathjax-editing");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "69"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        noCode: true, onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );






        Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.









        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171404%2fwhy-does-sinx-siny-equal-this%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        5












        $begingroup$

        The main trick is here:



        beginalign
        colorred x = x+yover2 + x-yover2\[1em]
        colorbluey = x+yover2 - x-yover2
        endalign



        (You may evaluate the right-hand sides of them to verify that these strange equations are correct.)



        Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain



        beginalign
        sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
        endalign



        All the rest is then only a routine calculation:



        beginalign
        requireenclose
        &= sin left(x+yover2right) cosleft( x-yover2 right) +
        sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
        &-left[sin left(x+yover2right) cosleft( x-yover2 right) -
        sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
        &= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
        sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
        &-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
        sin left(x-yover2right) cosleft( x+yover2 right)
        \[3em]
        &=2sin left(x-yover2right) cosleft( x+yover2 right)\
        endalign






        share|cite|improve this answer











        $endgroup$

















          5












          $begingroup$

          The main trick is here:



          beginalign
          colorred x = x+yover2 + x-yover2\[1em]
          colorbluey = x+yover2 - x-yover2
          endalign



          (You may evaluate the right-hand sides of them to verify that these strange equations are correct.)



          Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain



          beginalign
          sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
          endalign



          All the rest is then only a routine calculation:



          beginalign
          requireenclose
          &= sin left(x+yover2right) cosleft( x-yover2 right) +
          sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
          &-left[sin left(x+yover2right) cosleft( x-yover2 right) -
          sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
          &= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
          sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
          &-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
          sin left(x-yover2right) cosleft( x+yover2 right)
          \[3em]
          &=2sin left(x-yover2right) cosleft( x+yover2 right)\
          endalign






          share|cite|improve this answer











          $endgroup$















            5












            5








            5





            $begingroup$

            The main trick is here:



            beginalign
            colorred x = x+yover2 + x-yover2\[1em]
            colorbluey = x+yover2 - x-yover2
            endalign



            (You may evaluate the right-hand sides of them to verify that these strange equations are correct.)



            Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain



            beginalign
            sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
            endalign



            All the rest is then only a routine calculation:



            beginalign
            requireenclose
            &= sin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
            &-left[sin left(x+yover2right) cosleft( x-yover2 right) -
            sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
            &= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
            &-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)
            \[3em]
            &=2sin left(x-yover2right) cosleft( x+yover2 right)\
            endalign






            share|cite|improve this answer











            $endgroup$



            The main trick is here:



            beginalign
            colorred x = x+yover2 + x-yover2\[1em]
            colorbluey = x+yover2 - x-yover2
            endalign



            (You may evaluate the right-hand sides of them to verify that these strange equations are correct.)



            Substituting the right-hand sides for $colorredx$ and $colorbluey,,$ you will obtain



            beginalign
            sin colorred x - sin colorblue y = sin left(colorredx+yover2 + x-yover2 right) - sin left(colorblue x+yover2 - x-yover2 right) \[1em]
            endalign



            All the rest is then only a routine calculation:



            beginalign
            requireenclose
            &= sin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
            &-left[sin left(x+yover2right) cosleft( x-yover2 right) -
            sin left(x-yover2right) cosleft( x+yover2 right)right]\[3em]
            &= encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)\[1em]
            &-encloseupdiagonalstrikesin left(x+yover2right) cosleft( x-yover2 right) +
            sin left(x-yover2right) cosleft( x+yover2 right)
            \[3em]
            &=2sin left(x-yover2right) cosleft( x+yover2 right)\
            endalign







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 1 hour ago

























            answered 1 hour ago









            MarianDMarianD

            2,0831617




            2,0831617





















                4












                $begingroup$

                Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.






                share|cite|improve this answer









                $endgroup$

















                  4












                  $begingroup$

                  Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.






                  share|cite|improve this answer









                  $endgroup$















                    4












                    4








                    4





                    $begingroup$

                    Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.






                    share|cite|improve this answer









                    $endgroup$



                    Following your professor's advice, let $A=fracx+y2$, $B=fracx-y2$. Then $$x=A+B\y=A-B$$So the LHS of your equation becomes $$sin(A+B)-sin(A-B)$$Now you just use the usual addition/subtraction trigonometric identities (i) and (ii) listed to evaluate this. It should give $2cos Asin B$ as required.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 2 hours ago









                    John DoeJohn Doe

                    11.4k11239




                    11.4k11239





















                        2












                        $begingroup$

                        Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
                        Note that $A+B=x$ and $A-B=y$.



                        Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.



                        To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.






                        share|cite|improve this answer









                        $endgroup$

















                          2












                          $begingroup$

                          Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
                          Note that $A+B=x$ and $A-B=y$.



                          Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.



                          To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.






                          share|cite|improve this answer









                          $endgroup$















                            2












                            2








                            2





                            $begingroup$

                            Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
                            Note that $A+B=x$ and $A-B=y$.



                            Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.



                            To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.






                            share|cite|improve this answer









                            $endgroup$



                            Following your notation, let $A=dfracx+y2$ and $B=dfracx-y2$.
                            Note that $A+B=x$ and $A-B=y$.



                            Now, $sin x=sin(A+B)=sin Acos B+cos Asin B$ and $sin y=sin(A-B)=sin Acos B - cos Asin B$ from your professor's advice.



                            To get the LHS, $sin x-sin y = 2cos Asin B$. And that's it. Replace $A,B$ in terms of $x$ and $y$.







                            share|cite|improve this answer












                            share|cite|improve this answer



                            share|cite|improve this answer










                            answered 1 hour ago









                            AdmuthAdmuth

                            685




                            685




















                                Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.









                                draft saved

                                draft discarded


















                                Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.












                                Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.











                                Ryan Duran is a new contributor. Be nice, and check out our Code of Conduct.














                                Thanks for contributing an answer to Mathematics Stack Exchange!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                Use MathJax to format equations. MathJax reference.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3171404%2fwhy-does-sinx-siny-equal-this%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Log på Navigationsmenu

                                Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                                Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5