“Counterexample” for the Inverse function theoremApplication of the Inverse Function TheoremQuestion regarding the Kolmogorov-Riesz theorem on relatively compact subsets of $L^p(Omega)$.Looking for a special kind of injective functionInverse Function Theorem and InjectivityFind all $(x,y,z) in mathbbR^3$ where $f(x,y,z)=(xy,xz,yz)$ is locally invertibleInverse Function Theorem and global inversesInverse function theorem local injectivity proofFunction satisfying $(Df(x)h,h) geq alpha(h,h), forall x,h in mathbbR^n$ has an inverse around every point?Jordan Regions and the Inverse Function TheoremHow is this not a proof of the Jacobian conjecture in the complex case?
A latin word for "area of interest"
How to deal with the extreme reverberation in big cathedrals when playing the pipe organs?
Non-African Click Languages
Pedaling at different gear ratios on flat terrain: what's the point?
Physically unpleasant work environment
What formula to chose a nonlinear formula?
bash: Counting characters within multiple files
Is there any deeper thematic meaning to the white horse that Arya finds in The Bells (S08E05)?
Why does Taylor’s series “work”?
Promotion comes with unexpected 24/7/365 on-call
Does a non-singular matrix have a large minor with disjoint rows and columns and full rank?
Find the area of the rectangle
Why can't I share a one use code with anyone else?
Why didn't Daenerys' advisers suggest assassinating Cersei?
FIFO data structure in pure C
How do Ctrl+C and Ctrl+V work?
Divisor Rich and Poor Numbers
Why are lawsuits between the President and Congress not automatically sent to the Supreme Court
Why does string strummed with finger sound different from the one strummed with pick?
How was the blinking terminal cursor invented?
How does this piece of code determine array size without using sizeof( )?
Omit property variable when using object destructuring
What kind of action are dodge and disengage?
How does the Heat Metal spell interact with a follow-up Frostbite spell?
“Counterexample” for the Inverse function theorem
Application of the Inverse Function TheoremQuestion regarding the Kolmogorov-Riesz theorem on relatively compact subsets of $L^p(Omega)$.Looking for a special kind of injective functionInverse Function Theorem and InjectivityFind all $(x,y,z) in mathbbR^3$ where $f(x,y,z)=(xy,xz,yz)$ is locally invertibleInverse Function Theorem and global inversesInverse function theorem local injectivity proofFunction satisfying $(Df(x)h,h) geq alpha(h,h), forall x,h in mathbbR^n$ has an inverse around every point?Jordan Regions and the Inverse Function TheoremHow is this not a proof of the Jacobian conjecture in the complex case?
$begingroup$
In my class we stated the theorem as follows:
Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...
This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?
Thanks
real-analysis examples-counterexamples inverse-function-theorem
$endgroup$
add a comment |
$begingroup$
In my class we stated the theorem as follows:
Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...
This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?
Thanks
real-analysis examples-counterexamples inverse-function-theorem
$endgroup$
add a comment |
$begingroup$
In my class we stated the theorem as follows:
Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...
This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?
Thanks
real-analysis examples-counterexamples inverse-function-theorem
$endgroup$
In my class we stated the theorem as follows:
Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...
This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?
Thanks
real-analysis examples-counterexamples inverse-function-theorem
real-analysis examples-counterexamples inverse-function-theorem
asked 3 hours ago
PedroPedro
661212
661212
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
Actually, this is not possible in $mathbbR^n$ either.
Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).
From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3227626%2fcounterexample-for-the-inverse-function-theorem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Actually, this is not possible in $mathbbR^n$ either.
Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).
From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.
$endgroup$
add a comment |
$begingroup$
Actually, this is not possible in $mathbbR^n$ either.
Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).
From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.
$endgroup$
add a comment |
$begingroup$
Actually, this is not possible in $mathbbR^n$ either.
Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).
From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.
$endgroup$
Actually, this is not possible in $mathbbR^n$ either.
Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).
From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.
answered 2 hours ago
MindlackMindlack
5,100312
5,100312
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3227626%2fcounterexample-for-the-inverse-function-theorem%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown