“Counterexample” for the Inverse function theoremApplication of the Inverse Function TheoremQuestion regarding the Kolmogorov-Riesz theorem on relatively compact subsets of $L^p(Omega)$.Looking for a special kind of injective functionInverse Function Theorem and InjectivityFind all $(x,y,z) in mathbbR^3$ where $f(x,y,z)=(xy,xz,yz)$ is locally invertibleInverse Function Theorem and global inversesInverse function theorem local injectivity proofFunction satisfying $(Df(x)h,h) geq alpha(h,h), forall x,h in mathbbR^n$ has an inverse around every point?Jordan Regions and the Inverse Function TheoremHow is this not a proof of the Jacobian conjecture in the complex case?

A latin word for "area of interest"

How to deal with the extreme reverberation in big cathedrals when playing the pipe organs?

Non-African Click Languages

Pedaling at different gear ratios on flat terrain: what's the point?

Physically unpleasant work environment

What formula to chose a nonlinear formula?

bash: Counting characters within multiple files

Is there any deeper thematic meaning to the white horse that Arya finds in The Bells (S08E05)?

Why does Taylor’s series “work”?

Promotion comes with unexpected 24/7/365 on-call

Does a non-singular matrix have a large minor with disjoint rows and columns and full rank?

Find the area of the rectangle

Why can't I share a one use code with anyone else?

Why didn't Daenerys' advisers suggest assassinating Cersei?

FIFO data structure in pure C

How do Ctrl+C and Ctrl+V work?

Divisor Rich and Poor Numbers

Why are lawsuits between the President and Congress not automatically sent to the Supreme Court

Why does string strummed with finger sound different from the one strummed with pick?

How was the blinking terminal cursor invented?

How does this piece of code determine array size without using sizeof( )?

Omit property variable when using object destructuring

What kind of action are dodge and disengage?

How does the Heat Metal spell interact with a follow-up Frostbite spell?



“Counterexample” for the Inverse function theorem


Application of the Inverse Function TheoremQuestion regarding the Kolmogorov-Riesz theorem on relatively compact subsets of $L^p(Omega)$.Looking for a special kind of injective functionInverse Function Theorem and InjectivityFind all $(x,y,z) in mathbbR^3$ where $f(x,y,z)=(xy,xz,yz)$ is locally invertibleInverse Function Theorem and global inversesInverse function theorem local injectivity proofFunction satisfying $(Df(x)h,h) geq alpha(h,h), forall x,h in mathbbR^n$ has an inverse around every point?Jordan Regions and the Inverse Function TheoremHow is this not a proof of the Jacobian conjecture in the complex case?













6












$begingroup$


In my class we stated the theorem as follows:



Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...



This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?



Thanks










share|cite|improve this question









$endgroup$
















    6












    $begingroup$


    In my class we stated the theorem as follows:



    Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...



    This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?



    Thanks










    share|cite|improve this question









    $endgroup$














      6












      6








      6


      1



      $begingroup$


      In my class we stated the theorem as follows:



      Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...



      This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?



      Thanks










      share|cite|improve this question









      $endgroup$




      In my class we stated the theorem as follows:



      Let $OmegasubseteqmathbbR^n$ be an open set and $f:OmegatomathbbR^n$ a $mathscrC^1(Omega)$ function. If $|J_f(a)|ne0$ for some $ainOmega$ then there exists $delta>0$ such that $g:=fvert_B(a,delta)$ is injective and ...



      This only is a sufficient condition, so is there any function whose jacobian has determinant $0$ at every point but still is injective? If the determinant only vanished on one single point something similar to $f(x)=x^3$ at $x=0$ in $mathbbR$ would do the trick, but if $|f'(x)|=0$ for every $xinOmegasubseteqmathbbR$ then $f$ is constant and not injective. Does the same hold in $mathbbR^n$?



      Thanks







      real-analysis examples-counterexamples inverse-function-theorem






      share|cite|improve this question













      share|cite|improve this question











      share|cite|improve this question




      share|cite|improve this question










      asked 3 hours ago









      PedroPedro

      661212




      661212




















          1 Answer
          1






          active

          oldest

          votes


















          6












          $begingroup$

          Actually, this is not possible in $mathbbR^n$ either.



          Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).



          From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.






          share|cite|improve this answer









          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3227626%2fcounterexample-for-the-inverse-function-theorem%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            6












            $begingroup$

            Actually, this is not possible in $mathbbR^n$ either.



            Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).



            From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.






            share|cite|improve this answer









            $endgroup$

















              6












              $begingroup$

              Actually, this is not possible in $mathbbR^n$ either.



              Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).



              From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.






              share|cite|improve this answer









              $endgroup$















                6












                6








                6





                $begingroup$

                Actually, this is not possible in $mathbbR^n$ either.



                Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).



                From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.






                share|cite|improve this answer









                $endgroup$



                Actually, this is not possible in $mathbbR^n$ either.



                Indeed, if you have any $mathscrC^1$ injective function $f: Omega rightarrow mathbbR^n$, then $f$ is open and a homeomorphism on its image (invariance of domain : https://en.m.wikipedia.org/wiki/Invariance_of_domain ).



                From Sard’s theorem (https://en.m.wikipedia.org/wiki/Sard%27s_theorem ), the set of critical values has null measure in $mathbbR^n$, thus has empty interior, thus the set of critical points has no interior as well.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 hours ago









                MindlackMindlack

                5,100312




                5,100312



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3227626%2fcounterexample-for-the-inverse-function-theorem%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Log på Navigationsmenu

                    Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                    Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5