Add an angle to a sphereHow can I draw an arc from point A -> B on a 3D sphere in TikZ?How is the center point of an arc path determined?How can I draw tikz arrows on a calculated triangle?tikz: draw a piece of a path between given coordinatesPGF: draw longitudinal arcs in 3D axis environmentTikZ: Drawing an arc from an intersection to an intersectionPositioning entries in a Venn diagramA node not being typesetDraw a sphere in TikzFill a section between two circles with TikZFill angle text in TikZ

How to create a consistent feel for character names in a fantasy setting?

I’m planning on buying a laser printer but concerned about the life cycle of toner in the machine

Einstein metrics on spheres

"My colleague's body is amazing"

What does 'script /dev/null' do?

What does "enim et" mean?

Extreme, but not acceptable situation and I can't start the work tomorrow morning

Is it legal to have the "// (c) 2019 John Smith" header in all files when there are hundreds of contributors?

How to make payment on the internet without leaving a money trail?

Could Giant Ground Sloths have been a Good Pack Animal for the Ancient Mayans

What happens when a metallic dragon and a chromatic dragon mate?

How to move the player while also allowing forces to affect it

Where to refill my bottle in India?

Is there a familial term for apples and pears?

Email Account under attack (really) - anything I can do?

How can I fix this gap between bookcases I made?

When blogging recipes, how can I support both readers who want the narrative/journey and ones who want the printer-friendly recipe?

Is domain driven design an anti-SQL pattern?

Information to fellow intern about hiring?

What is the offset in a seaplane's hull?

Is "plugging out" electronic devices an American expression?

extract characters between two commas?

Pristine Bit Checking

Add an angle to a sphere



Add an angle to a sphere


How can I draw an arc from point A -> B on a 3D sphere in TikZ?How is the center point of an arc path determined?How can I draw tikz arrows on a calculated triangle?tikz: draw a piece of a path between given coordinatesPGF: draw longitudinal arcs in 3D axis environmentTikZ: Drawing an arc from an intersection to an intersectionPositioning entries in a Venn diagramA node not being typesetDraw a sphere in TikzFill a section between two circles with TikZFill angle text in TikZ













5















I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



 % Steradian cone in sphere
% Author: Bartman
documentclass[tikz,border=10pt]standalone
%%%<
usepackageverbatim
%%%>
begincomment
:Title: Steradian cone in sphere
:Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
:Author: Bartman
:Slug: steradian-cone-sphere

A graphical representation of a steradian.
It is the solid angle subtended at the center
of a unit sphere by a unit area on its surface. (Wikipedia)

Made by Bartman on
http://golatex.de/3d-kugel-in-tikz-t17380.html

The part of the cone is from http://tex.stackexchange.com/a/186109/213
endcomment
usepackagesansmath
usetikzlibraryshadings,intersections
begindocument
begintikzpicture[font = sansmath]
coordinate (O) at (0,0);



% ball background color
shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

% cone
beginscope
defrx0.71% horizontal radius of the ellipse
defry0.15% vertical radius of the ellipse
defz0.725% distance from center of ellipse to origin

path [name path = ellipse] (0,z) ellipse (rx and ry);
path [name path = horizontal] (-rx,z-ry*ry/z)
-- (rx,z-ry*ry/z);
path [name intersections = of = ellipse and horizontal];


endscope


% ball
draw (O) circle [radius=2cm];
% label of ball center point
filldraw (O) circle (1pt) node[below] $O$;

% radius
draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
draw[densely dashed] (O) -- (1.33,1.33);

% cut of ball surface
draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
x radius = 13.8mm, y radius = 3.6mm];
draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
x radius = 13.75mm, y radius = 3.15mm];

% label of cut of ball surface
draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
endtikzpicture
enddocument


I want to add an angle alpha like this:



enter image description here



How can I do this?










share|improve this question







New contributor




medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    5















    I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



     % Steradian cone in sphere
    % Author: Bartman
    documentclass[tikz,border=10pt]standalone
    %%%<
    usepackageverbatim
    %%%>
    begincomment
    :Title: Steradian cone in sphere
    :Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
    :Author: Bartman
    :Slug: steradian-cone-sphere

    A graphical representation of a steradian.
    It is the solid angle subtended at the center
    of a unit sphere by a unit area on its surface. (Wikipedia)

    Made by Bartman on
    http://golatex.de/3d-kugel-in-tikz-t17380.html

    The part of the cone is from http://tex.stackexchange.com/a/186109/213
    endcomment
    usepackagesansmath
    usetikzlibraryshadings,intersections
    begindocument
    begintikzpicture[font = sansmath]
    coordinate (O) at (0,0);



    % ball background color
    shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

    % cone
    beginscope
    defrx0.71% horizontal radius of the ellipse
    defry0.15% vertical radius of the ellipse
    defz0.725% distance from center of ellipse to origin

    path [name path = ellipse] (0,z) ellipse (rx and ry);
    path [name path = horizontal] (-rx,z-ry*ry/z)
    -- (rx,z-ry*ry/z);
    path [name intersections = of = ellipse and horizontal];


    endscope


    % ball
    draw (O) circle [radius=2cm];
    % label of ball center point
    filldraw (O) circle (1pt) node[below] $O$;

    % radius
    draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
    draw[densely dashed] (O) -- (1.33,1.33);

    % cut of ball surface
    draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
    x radius = 13.8mm, y radius = 3.6mm];
    draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
    x radius = 13.75mm, y radius = 3.15mm];

    % label of cut of ball surface
    draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
    endtikzpicture
    enddocument


    I want to add an angle alpha like this:



    enter image description here



    How can I do this?










    share|improve this question







    New contributor




    medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      5












      5








      5


      1






      I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



       % Steradian cone in sphere
      % Author: Bartman
      documentclass[tikz,border=10pt]standalone
      %%%<
      usepackageverbatim
      %%%>
      begincomment
      :Title: Steradian cone in sphere
      :Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
      :Author: Bartman
      :Slug: steradian-cone-sphere

      A graphical representation of a steradian.
      It is the solid angle subtended at the center
      of a unit sphere by a unit area on its surface. (Wikipedia)

      Made by Bartman on
      http://golatex.de/3d-kugel-in-tikz-t17380.html

      The part of the cone is from http://tex.stackexchange.com/a/186109/213
      endcomment
      usepackagesansmath
      usetikzlibraryshadings,intersections
      begindocument
      begintikzpicture[font = sansmath]
      coordinate (O) at (0,0);



      % ball background color
      shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

      % cone
      beginscope
      defrx0.71% horizontal radius of the ellipse
      defry0.15% vertical radius of the ellipse
      defz0.725% distance from center of ellipse to origin

      path [name path = ellipse] (0,z) ellipse (rx and ry);
      path [name path = horizontal] (-rx,z-ry*ry/z)
      -- (rx,z-ry*ry/z);
      path [name intersections = of = ellipse and horizontal];


      endscope


      % ball
      draw (O) circle [radius=2cm];
      % label of ball center point
      filldraw (O) circle (1pt) node[below] $O$;

      % radius
      draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
      draw[densely dashed] (O) -- (1.33,1.33);

      % cut of ball surface
      draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
      x radius = 13.8mm, y radius = 3.6mm];
      draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
      x radius = 13.75mm, y radius = 3.15mm];

      % label of cut of ball surface
      draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
      endtikzpicture
      enddocument


      I want to add an angle alpha like this:



      enter image description here



      How can I do this?










      share|improve this question







      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.












      I have a sphere (taken from http://www.texample.net/tikz/examples/, credits to Bartman):



       % Steradian cone in sphere
      % Author: Bartman
      documentclass[tikz,border=10pt]standalone
      %%%<
      usepackageverbatim
      %%%>
      begincomment
      :Title: Steradian cone in sphere
      :Tags: 3D;Angles;Intersections;Shadings;MMathematics;Geometry
      :Author: Bartman
      :Slug: steradian-cone-sphere

      A graphical representation of a steradian.
      It is the solid angle subtended at the center
      of a unit sphere by a unit area on its surface. (Wikipedia)

      Made by Bartman on
      http://golatex.de/3d-kugel-in-tikz-t17380.html

      The part of the cone is from http://tex.stackexchange.com/a/186109/213
      endcomment
      usepackagesansmath
      usetikzlibraryshadings,intersections
      begindocument
      begintikzpicture[font = sansmath]
      coordinate (O) at (0,0);



      % ball background color
      shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];

      % cone
      beginscope
      defrx0.71% horizontal radius of the ellipse
      defry0.15% vertical radius of the ellipse
      defz0.725% distance from center of ellipse to origin

      path [name path = ellipse] (0,z) ellipse (rx and ry);
      path [name path = horizontal] (-rx,z-ry*ry/z)
      -- (rx,z-ry*ry/z);
      path [name intersections = of = ellipse and horizontal];


      endscope


      % ball
      draw (O) circle [radius=2cm];
      % label of ball center point
      filldraw (O) circle (1pt) node[below] $O$;

      % radius
      draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33);
      draw[densely dashed] (O) -- (1.33,1.33);

      % cut of ball surface
      draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
      x radius = 13.8mm, y radius = 3.6mm];
      draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
      x radius = 13.75mm, y radius = 3.15mm];

      % label of cut of ball surface
      draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;
      endtikzpicture
      enddocument


      I want to add an angle alpha like this:



      enter image description here



      How can I do this?







      tikz-pgf tikz-angles






      share|improve this question







      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 8 hours ago









      medihdemedihde

      373




      373




      New contributor




      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      medihde is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.




















          2 Answers
          2






          active

          oldest

          votes


















          4














          First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



          documentclass[tikz,border=10pt]standalone
          usepackagesansmath
          usetikzlibraryshadings,intersections,quotes,angles
          begindocument
          begintikzpicture[font = sansmath]
          coordinate (O) at (0,0);
          shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
          beginscope
          defrx0.71% horizontal radius of the ellipse
          defry0.15% vertical radius of the ellipse
          defz0.725% distance from center of ellipse to origin
          path [name path = ellipse] (0,z) ellipse (rx and ry);
          path [name path = horizontal] (-rx,z-ry*ry/z)
          -- (rx,z-ry*ry/z);
          path [name intersections = of = ellipse and horizontal];
          endscope
          draw (O) circle [radius=2cm];
          filldraw (O) circle (1pt) node[below] $O$;
          draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
          draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
          draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
          x radius = 13.8mm, y radius = 3.6mm];
          draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
          x radius = 13.75mm, y radius = 3.15mm];
          draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;

          % Command for the angle
          pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
          endtikzpicture
          enddocument


          enter image description here






          share|improve this answer






























            4














            This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.




            1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

            2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

            3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.



            documentclass[tikz,border=3.14mm]standalone
            usepackagetikz-3dplot
            usetikzlibrary3d,backgrounds,quotes,angles
            begindocument
            tdplotsetmaincoords8000
            begintikzpicture[tdplot_main_coords]
            pgfmathsetmacroR2 % radius
            pgfmathsetmacromyang50 % latitude angle of the red circle
            coordinate (O) at (0,0,0);
            shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
            (O) circle [radius = R*1cm];
            beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
            % angVis from https://tex.stackexchange.com/a/49589/121799
            pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
            beginscope[on background layer]
            draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
            endscope
            draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
            path (0:R*cos(myang)) coordinate (R)
            (180:R*cos(myang)) coordinate (L);
            endscope
            beginscope[on background layer]
            draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
            fill (O) circle[radius=1pt] node[below] $O$;
            pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
            angle=R--O--L;
            endscope
            endtikzpicture
            enddocument


            enter image description here



            The following animation shows that you can dial view and latitude as you wish.



            documentclass[tikz,border=3.14mm]standalone
            usepackagetikz-3dplot
            usetikzlibrary3d,backgrounds,quotes,angles
            begindocument
            foreach Angle in 5,15,...,355
            tdplotsetmaincoords70+cos(Angle)00
            begintikzpicture[tdplot_main_coords]
            pgfmathsetmacroR2 % radius
            pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
            coordinate (O) at (0,0,0);
            shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
            (O) circle [radius = R*1cm];
            beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
            % angVis from https://tex.stackexchange.com/a/49589/121799
            pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
            beginscope[on background layer]
            draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
            endscope
            draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
            path (0:R*cos(myang)) coordinate (R)
            (180:R*cos(myang)) coordinate (L);
            endscope
            beginscope[on background layer]
            draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
            fill (O) circle[radius=1pt] node[below] $O$;
            pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
            angle=R--O--L;
            endscope
            endtikzpicture
            enddocument


            enter image description here






            share|improve this answer























              Your Answer








              StackExchange.ready(function()
              var channelOptions =
              tags: "".split(" "),
              id: "85"
              ;
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function()
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled)
              StackExchange.using("snippets", function()
              createEditor();
              );

              else
              createEditor();

              );

              function createEditor()
              StackExchange.prepareEditor(
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader:
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              ,
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              );



              );






              medihde is a new contributor. Be nice, and check out our Code of Conduct.









              draft saved

              draft discarded


















              StackExchange.ready(
              function ()
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483789%2fadd-an-angle-to-a-sphere%23new-answer', 'question_page');

              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              4














              First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



              documentclass[tikz,border=10pt]standalone
              usepackagesansmath
              usetikzlibraryshadings,intersections,quotes,angles
              begindocument
              begintikzpicture[font = sansmath]
              coordinate (O) at (0,0);
              shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
              beginscope
              defrx0.71% horizontal radius of the ellipse
              defry0.15% vertical radius of the ellipse
              defz0.725% distance from center of ellipse to origin
              path [name path = ellipse] (0,z) ellipse (rx and ry);
              path [name path = horizontal] (-rx,z-ry*ry/z)
              -- (rx,z-ry*ry/z);
              path [name intersections = of = ellipse and horizontal];
              endscope
              draw (O) circle [radius=2cm];
              filldraw (O) circle (1pt) node[below] $O$;
              draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
              draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
              draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
              x radius = 13.8mm, y radius = 3.6mm];
              draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
              x radius = 13.75mm, y radius = 3.15mm];
              draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;

              % Command for the angle
              pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
              endtikzpicture
              enddocument


              enter image description here






              share|improve this answer



























                4














                First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



                documentclass[tikz,border=10pt]standalone
                usepackagesansmath
                usetikzlibraryshadings,intersections,quotes,angles
                begindocument
                begintikzpicture[font = sansmath]
                coordinate (O) at (0,0);
                shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
                beginscope
                defrx0.71% horizontal radius of the ellipse
                defry0.15% vertical radius of the ellipse
                defz0.725% distance from center of ellipse to origin
                path [name path = ellipse] (0,z) ellipse (rx and ry);
                path [name path = horizontal] (-rx,z-ry*ry/z)
                -- (rx,z-ry*ry/z);
                path [name intersections = of = ellipse and horizontal];
                endscope
                draw (O) circle [radius=2cm];
                filldraw (O) circle (1pt) node[below] $O$;
                draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
                draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
                draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
                x radius = 13.8mm, y radius = 3.6mm];
                draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
                x radius = 13.75mm, y radius = 3.15mm];
                draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;

                % Command for the angle
                pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
                endtikzpicture
                enddocument


                enter image description here






                share|improve this answer

























                  4












                  4








                  4







                  First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



                  documentclass[tikz,border=10pt]standalone
                  usepackagesansmath
                  usetikzlibraryshadings,intersections,quotes,angles
                  begindocument
                  begintikzpicture[font = sansmath]
                  coordinate (O) at (0,0);
                  shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
                  beginscope
                  defrx0.71% horizontal radius of the ellipse
                  defry0.15% vertical radius of the ellipse
                  defz0.725% distance from center of ellipse to origin
                  path [name path = ellipse] (0,z) ellipse (rx and ry);
                  path [name path = horizontal] (-rx,z-ry*ry/z)
                  -- (rx,z-ry*ry/z);
                  path [name intersections = of = ellipse and horizontal];
                  endscope
                  draw (O) circle [radius=2cm];
                  filldraw (O) circle (1pt) node[below] $O$;
                  draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
                  draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
                  draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
                  x radius = 13.8mm, y radius = 3.6mm];
                  draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
                  x radius = 13.75mm, y radius = 3.15mm];
                  draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;

                  % Command for the angle
                  pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
                  endtikzpicture
                  enddocument


                  enter image description here






                  share|improve this answer













                  First, you have to name the coordinate for the edges of the angle. Here I use (x) and (y).



                  documentclass[tikz,border=10pt]standalone
                  usepackagesansmath
                  usetikzlibraryshadings,intersections,quotes,angles
                  begindocument
                  begintikzpicture[font = sansmath]
                  coordinate (O) at (0,0);
                  shade[ball color = blue, opacity = 0.2] (0,0) circle [radius = 2cm];
                  beginscope
                  defrx0.71% horizontal radius of the ellipse
                  defry0.15% vertical radius of the ellipse
                  defz0.725% distance from center of ellipse to origin
                  path [name path = ellipse] (0,z) ellipse (rx and ry);
                  path [name path = horizontal] (-rx,z-ry*ry/z)
                  -- (rx,z-ry*ry/z);
                  path [name intersections = of = ellipse and horizontal];
                  endscope
                  draw (O) circle [radius=2cm];
                  filldraw (O) circle (1pt) node[below] $O$;
                  draw[densely dashed] (O) to [edge label = $1$] (-1.33,1.33) coordinate (x);
                  draw[densely dashed] (O) -- (1.33,1.33) coordinate (y);
                  draw[red, densely dashed] (-1.36,1.46) arc [start angle = 170, end angle = 10,
                  x radius = 13.8mm, y radius = 3.6mm];
                  draw[red] (-1.29,1.52) arc [start angle=-200, end angle = 20,
                  x radius = 13.75mm, y radius = 3.15mm];
                  draw (-1.2,2.2) -- (-0.23,1.1) node at (-1.37,2.37) $B$;

                  % Command for the angle
                  pic[draw,->,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"] angle=y--O--x;
                  endtikzpicture
                  enddocument


                  enter image description here







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 8 hours ago









                  JouleVJouleV

                  11.7k22561




                  11.7k22561





















                      4














                      This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.




                      1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                      2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                      3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.



                      documentclass[tikz,border=3.14mm]standalone
                      usepackagetikz-3dplot
                      usetikzlibrary3d,backgrounds,quotes,angles
                      begindocument
                      tdplotsetmaincoords8000
                      begintikzpicture[tdplot_main_coords]
                      pgfmathsetmacroR2 % radius
                      pgfmathsetmacromyang50 % latitude angle of the red circle
                      coordinate (O) at (0,0,0);
                      shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                      (O) circle [radius = R*1cm];
                      beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                      % angVis from https://tex.stackexchange.com/a/49589/121799
                      pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                      beginscope[on background layer]
                      draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                      endscope
                      draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                      path (0:R*cos(myang)) coordinate (R)
                      (180:R*cos(myang)) coordinate (L);
                      endscope
                      beginscope[on background layer]
                      draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                      fill (O) circle[radius=1pt] node[below] $O$;
                      pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                      angle=R--O--L;
                      endscope
                      endtikzpicture
                      enddocument


                      enter image description here



                      The following animation shows that you can dial view and latitude as you wish.



                      documentclass[tikz,border=3.14mm]standalone
                      usepackagetikz-3dplot
                      usetikzlibrary3d,backgrounds,quotes,angles
                      begindocument
                      foreach Angle in 5,15,...,355
                      tdplotsetmaincoords70+cos(Angle)00
                      begintikzpicture[tdplot_main_coords]
                      pgfmathsetmacroR2 % radius
                      pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
                      coordinate (O) at (0,0,0);
                      shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                      (O) circle [radius = R*1cm];
                      beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                      % angVis from https://tex.stackexchange.com/a/49589/121799
                      pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                      beginscope[on background layer]
                      draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                      endscope
                      draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                      path (0:R*cos(myang)) coordinate (R)
                      (180:R*cos(myang)) coordinate (L);
                      endscope
                      beginscope[on background layer]
                      draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                      fill (O) circle[radius=1pt] node[below] $O$;
                      pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                      angle=R--O--L;
                      endscope
                      endtikzpicture
                      enddocument


                      enter image description here






                      share|improve this answer



























                        4














                        This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.




                        1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                        2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                        3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.



                        documentclass[tikz,border=3.14mm]standalone
                        usepackagetikz-3dplot
                        usetikzlibrary3d,backgrounds,quotes,angles
                        begindocument
                        tdplotsetmaincoords8000
                        begintikzpicture[tdplot_main_coords]
                        pgfmathsetmacroR2 % radius
                        pgfmathsetmacromyang50 % latitude angle of the red circle
                        coordinate (O) at (0,0,0);
                        shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                        (O) circle [radius = R*1cm];
                        beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                        % angVis from https://tex.stackexchange.com/a/49589/121799
                        pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                        beginscope[on background layer]
                        draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                        endscope
                        draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                        path (0:R*cos(myang)) coordinate (R)
                        (180:R*cos(myang)) coordinate (L);
                        endscope
                        beginscope[on background layer]
                        draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                        fill (O) circle[radius=1pt] node[below] $O$;
                        pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                        angle=R--O--L;
                        endscope
                        endtikzpicture
                        enddocument


                        enter image description here



                        The following animation shows that you can dial view and latitude as you wish.



                        documentclass[tikz,border=3.14mm]standalone
                        usepackagetikz-3dplot
                        usetikzlibrary3d,backgrounds,quotes,angles
                        begindocument
                        foreach Angle in 5,15,...,355
                        tdplotsetmaincoords70+cos(Angle)00
                        begintikzpicture[tdplot_main_coords]
                        pgfmathsetmacroR2 % radius
                        pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
                        coordinate (O) at (0,0,0);
                        shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                        (O) circle [radius = R*1cm];
                        beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                        % angVis from https://tex.stackexchange.com/a/49589/121799
                        pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                        beginscope[on background layer]
                        draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                        endscope
                        draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                        path (0:R*cos(myang)) coordinate (R)
                        (180:R*cos(myang)) coordinate (L);
                        endscope
                        beginscope[on background layer]
                        draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                        fill (O) circle[radius=1pt] node[below] $O$;
                        pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                        angle=R--O--L;
                        endscope
                        endtikzpicture
                        enddocument


                        enter image description here






                        share|improve this answer

























                          4












                          4








                          4







                          This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.




                          1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                          2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                          3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.



                          documentclass[tikz,border=3.14mm]standalone
                          usepackagetikz-3dplot
                          usetikzlibrary3d,backgrounds,quotes,angles
                          begindocument
                          tdplotsetmaincoords8000
                          begintikzpicture[tdplot_main_coords]
                          pgfmathsetmacroR2 % radius
                          pgfmathsetmacromyang50 % latitude angle of the red circle
                          coordinate (O) at (0,0,0);
                          shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                          (O) circle [radius = R*1cm];
                          beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                          % angVis from https://tex.stackexchange.com/a/49589/121799
                          pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                          beginscope[on background layer]
                          draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                          endscope
                          draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                          path (0:R*cos(myang)) coordinate (R)
                          (180:R*cos(myang)) coordinate (L);
                          endscope
                          beginscope[on background layer]
                          draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                          fill (O) circle[radius=1pt] node[below] $O$;
                          pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                          angle=R--O--L;
                          endscope
                          endtikzpicture
                          enddocument


                          enter image description here



                          The following animation shows that you can dial view and latitude as you wish.



                          documentclass[tikz,border=3.14mm]standalone
                          usepackagetikz-3dplot
                          usetikzlibrary3d,backgrounds,quotes,angles
                          begindocument
                          foreach Angle in 5,15,...,355
                          tdplotsetmaincoords70+cos(Angle)00
                          begintikzpicture[tdplot_main_coords]
                          pgfmathsetmacroR2 % radius
                          pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
                          coordinate (O) at (0,0,0);
                          shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                          (O) circle [radius = R*1cm];
                          beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                          % angVis from https://tex.stackexchange.com/a/49589/121799
                          pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                          beginscope[on background layer]
                          draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                          endscope
                          draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                          path (0:R*cos(myang)) coordinate (R)
                          (180:R*cos(myang)) coordinate (L);
                          endscope
                          beginscope[on background layer]
                          draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                          fill (O) circle[radius=1pt] node[below] $O$;
                          pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                          angle=R--O--L;
                          endscope
                          endtikzpicture
                          enddocument


                          enter image description here






                          share|improve this answer













                          This is just a small addendum to Joule V's nice answer, which solved the main problem. By now there are IMHO much better tools available to draw such graphs.




                          1. tikz-3dplot allows you to install orthographic projections, i.e. dial the view angles.

                          2. The 3d library allows you to switch to a plane to e.g. draw a latitude circle. So you no longer need to guess ellipses.

                          3. The angle of visibility, i.e. the angle at which the dashed lines turn in solid ones and vice versa has been compute e.g. here, so you do not need to guess this either.



                          documentclass[tikz,border=3.14mm]standalone
                          usepackagetikz-3dplot
                          usetikzlibrary3d,backgrounds,quotes,angles
                          begindocument
                          tdplotsetmaincoords8000
                          begintikzpicture[tdplot_main_coords]
                          pgfmathsetmacroR2 % radius
                          pgfmathsetmacromyang50 % latitude angle of the red circle
                          coordinate (O) at (0,0,0);
                          shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                          (O) circle [radius = R*1cm];
                          beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                          % angVis from https://tex.stackexchange.com/a/49589/121799
                          pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                          beginscope[on background layer]
                          draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                          endscope
                          draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                          path (0:R*cos(myang)) coordinate (R)
                          (180:R*cos(myang)) coordinate (L);
                          endscope
                          beginscope[on background layer]
                          draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                          fill (O) circle[radius=1pt] node[below] $O$;
                          pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                          angle=R--O--L;
                          endscope
                          endtikzpicture
                          enddocument


                          enter image description here



                          The following animation shows that you can dial view and latitude as you wish.



                          documentclass[tikz,border=3.14mm]standalone
                          usepackagetikz-3dplot
                          usetikzlibrary3d,backgrounds,quotes,angles
                          begindocument
                          foreach Angle in 5,15,...,355
                          tdplotsetmaincoords70+cos(Angle)00
                          begintikzpicture[tdplot_main_coords]
                          pgfmathsetmacroR2 % radius
                          pgfmathsetmacromyang40+15*sin(2*Angle) % latitude angle of the red circle
                          coordinate (O) at (0,0,0);
                          shade[ball color = blue, opacity = 0.2,tdplot_screen_coords]
                          (O) circle [radius = R*1cm];
                          beginscope[canvas is xy plane at z=R*sin(myang),transform shape]
                          % angVis from https://tex.stackexchange.com/a/49589/121799
                          pgfmathsetmacroangVisatan(sin(myang)*cos(tdplotmaintheta)/sin(tdplotmaintheta))
                          beginscope[on background layer]
                          draw[red,dashed] (angVis:R*cos(myang)) arc (angVis:180-angVis:R*cos(myang));
                          endscope
                          draw[red] (180-angVis:R*cos(myang)) arc (180-angVis:360+angVis:R*cos(myang));
                          path (0:R*cos(myang)) coordinate (R)
                          (180:R*cos(myang)) coordinate (L);
                          endscope
                          beginscope[on background layer]
                          draw[dashed] (L) -- (O) node[midway,below] $L$ -- (R);
                          fill (O) circle[radius=1pt] node[below] $O$;
                          pic[draw,-latex,angle radius=.5cm,angle eccentricity=1.3,"$alpha$"]
                          angle=R--O--L;
                          endscope
                          endtikzpicture
                          enddocument


                          enter image description here







                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered 7 hours ago









                          marmotmarmot

                          116k5147277




                          116k5147277




















                              medihde is a new contributor. Be nice, and check out our Code of Conduct.









                              draft saved

                              draft discarded


















                              medihde is a new contributor. Be nice, and check out our Code of Conduct.












                              medihde is a new contributor. Be nice, and check out our Code of Conduct.











                              medihde is a new contributor. Be nice, and check out our Code of Conduct.














                              Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid


                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.

                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function ()
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f483789%2fadd-an-angle-to-a-sphere%23new-answer', 'question_page');

                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Log på Navigationsmenu

                              Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                              Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5