How can I plot a Farey diagram?How to make this beautiful animationPlotting an epicycloidGenerating a topological space diagram for an n-element setMathematica code for Bifurcation DiagramHow to draw a contour diagram in Mathematica?How to draw timing diagram from a list of values?Expressing a series formulaBifurcation diagram for Piecewise functionHow to draw a clock-diagram?How can I plot a space time diagram in mathematica?Plotting classical polymer modelA problem in bifurcation diagram

COUNT(*) or MAX(id) - which is faster?

Why is the design of haulage companies so “special”?

aging parents with no investments

Was there ever an axiom rendered a theorem?

What do you call something that goes against the spirit of the law, but is legal when interpreting the law to the letter?

Is this food a bread or a loaf?

Finding files for which a command fails

Landlord wants to switch my lease to a "Land contract" to "get back at the city"

If a centaur druid Wild Shapes into a Giant Elk, do their Charge features stack?

Need help identifying/translating a plaque in Tangier, Morocco

"My colleague's body is amazing"

Is ipsum/ipsa/ipse a third person pronoun, or can it serve other functions?

A poker game description that does not feel gimmicky

Ideas for 3rd eye abilities

Unbreakable Formation vs. Cry of the Carnarium

What to wear for invited talk in Canada

What do the Banks children have against barley water?

Does the average primeness of natural numbers tend to zero?

Does it makes sense to buy a new cycle to learn riding?

Creating a loop after a break using Markov Chain in Tikz

How is it possible for user's password to be changed after storage was encrypted? (on OS X, Android)

LWC and complex parameters

Patience, young "Padovan"

Manga about a female worker who got dragged into another world together with this high school girl and she was just told she's not needed anymore



How can I plot a Farey diagram?


How to make this beautiful animationPlotting an epicycloidGenerating a topological space diagram for an n-element setMathematica code for Bifurcation DiagramHow to draw a contour diagram in Mathematica?How to draw timing diagram from a list of values?Expressing a series formulaBifurcation diagram for Piecewise functionHow to draw a clock-diagram?How can I plot a space time diagram in mathematica?Plotting classical polymer modelA problem in bifurcation diagram













2












$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    8 hours ago










  • $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    8 hours ago










  • $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    6 hours ago















2












$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    8 hours ago










  • $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    8 hours ago










  • $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    6 hours ago













2












2








2


2



$begingroup$


How can I plot the following diagram for a Farey series?



enter image description here










share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




How can I plot the following diagram for a Farey series?



enter image description here







graphics number-theory






share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|improve this question









New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|improve this question




share|improve this question








edited 3 hours ago









Michael E2

150k12203482




150k12203482






New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 9 hours ago









Gustavo RubianoGustavo Rubiano

143




143




New contributor




Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Gustavo Rubiano is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    8 hours ago










  • $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    8 hours ago










  • $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    6 hours ago
















  • $begingroup$
    From the beautiful book A. Hatcher Topology of numbers
    $endgroup$
    – Gustavo Rubiano
    8 hours ago










  • $begingroup$
    Could you perhaps expand a bit on how the curves are calculated etc?
    $endgroup$
    – MarcoB
    8 hours ago










  • $begingroup$
    pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
    $endgroup$
    – Moo
    6 hours ago















$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
8 hours ago




$begingroup$
From the beautiful book A. Hatcher Topology of numbers
$endgroup$
– Gustavo Rubiano
8 hours ago












$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
8 hours ago




$begingroup$
Could you perhaps expand a bit on how the curves are calculated etc?
$endgroup$
– MarcoB
8 hours ago












$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
6 hours ago




$begingroup$
pi.math.cornell.edu/~hatcher/TN/TNch1.pdf
$endgroup$
– Moo
6 hours ago










2 Answers
2






active

oldest

votes


















6












$begingroup$

The curvilinear triangles which are characteristic for this type of plot are called hypocyloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
hypocycloid[n_] := ParametricPlot[
x[1/n, 1, t], y[1/n, 1, t],
t, 0, 2 Pi,
PlotStyle -> Thickness[0.002], Black
]

Show[
Graphics[Circle[0, 0, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
ImageSize -> 500
]


Mathematica graphics



I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



mediant[a_, b_, c_, d_] := a + c, b + d
recursive[v1_, v2_, depth_] := If[
depth > 2,
mediant[v1, v2],
recursive[v1, mediant[v1, v2], depth + 1],
mediant[v1, v2],
recursive[mediant[v1, v2], v2, depth + 1]
]

computeLabels[v1_, v2_] := Module[numbers,
numbers =
Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
StringTemplate["``/``"] @@@ numbers
]
computeLabelsNegative[v1_, v2_] := Module[numbers,
numbers =
Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
StringTemplate["-`2`/`1`"] @@@ numbers
]

labels = Reverse@Join[
"1/0",
computeLabels[1, 0, 1, 1],
"1/1",
computeLabels[1, 1, 0, 1],
"0/1",
computeLabelsNegative[1, 0, 1, 1],
"-1,1",
computeLabelsNegative[1, 1, 0, 1]
];

coords = CirclePoints[1.1, 186 Degree, 64];

Show[
Graphics[Circle[0, 0, 1]],
hypocycloid[2],
hypocycloid[4],
hypocycloid[8],
hypocycloid[16],
hypocycloid[32],
hypocycloid[64],
Graphics@MapThread[Text, labels, coords],
ImageSize -> 500
]


Mathematica graphics






share|improve this answer











$endgroup$




















    2












    $begingroup$

    I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



    On that basis, you can generate the sequence as follows, for instance:



    ClearAll[farey]
    farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


    So for instance:



    farey[5]



    0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




    I am not sure how these sequences are connected with the figure you showed though.






    share|improve this answer









    $endgroup$













      Your Answer





      StackExchange.ifUsing("editor", function ()
      return StackExchange.using("mathjaxEditing", function ()
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      );
      );
      , "mathjax-editing");

      StackExchange.ready(function()
      var channelOptions =
      tags: "".split(" "),
      id: "387"
      ;
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function()
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled)
      StackExchange.using("snippets", function()
      createEditor();
      );

      else
      createEditor();

      );

      function createEditor()
      StackExchange.prepareEditor(
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader:
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      ,
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      );



      );






      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.









      draft saved

      draft discarded


















      StackExchange.ready(
      function ()
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');

      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      6












      $begingroup$

      The curvilinear triangles which are characteristic for this type of plot are called hypocyloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



      x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
      y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
      hypocycloid[n_] := ParametricPlot[
      x[1/n, 1, t], y[1/n, 1, t],
      t, 0, 2 Pi,
      PlotStyle -> Thickness[0.002], Black
      ]

      Show[
      Graphics[Circle[0, 0, 1]],
      hypocycloid[2],
      hypocycloid[4],
      hypocycloid[8],
      hypocycloid[16],
      hypocycloid[32],
      hypocycloid[64],
      ImageSize -> 500
      ]


      Mathematica graphics



      I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



      How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



      mediant[a_, b_, c_, d_] := a + c, b + d
      recursive[v1_, v2_, depth_] := If[
      depth > 2,
      mediant[v1, v2],
      recursive[v1, mediant[v1, v2], depth + 1],
      mediant[v1, v2],
      recursive[mediant[v1, v2], v2, depth + 1]
      ]

      computeLabels[v1_, v2_] := Module[numbers,
      numbers =
      Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
      StringTemplate["``/``"] @@@ numbers
      ]
      computeLabelsNegative[v1_, v2_] := Module[numbers,
      numbers =
      Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
      StringTemplate["-`2`/`1`"] @@@ numbers
      ]

      labels = Reverse@Join[
      "1/0",
      computeLabels[1, 0, 1, 1],
      "1/1",
      computeLabels[1, 1, 0, 1],
      "0/1",
      computeLabelsNegative[1, 0, 1, 1],
      "-1,1",
      computeLabelsNegative[1, 1, 0, 1]
      ];

      coords = CirclePoints[1.1, 186 Degree, 64];

      Show[
      Graphics[Circle[0, 0, 1]],
      hypocycloid[2],
      hypocycloid[4],
      hypocycloid[8],
      hypocycloid[16],
      hypocycloid[32],
      hypocycloid[64],
      Graphics@MapThread[Text, labels, coords],
      ImageSize -> 500
      ]


      Mathematica graphics






      share|improve this answer











      $endgroup$

















        6












        $begingroup$

        The curvilinear triangles which are characteristic for this type of plot are called hypocyloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



        x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
        y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
        hypocycloid[n_] := ParametricPlot[
        x[1/n, 1, t], y[1/n, 1, t],
        t, 0, 2 Pi,
        PlotStyle -> Thickness[0.002], Black
        ]

        Show[
        Graphics[Circle[0, 0, 1]],
        hypocycloid[2],
        hypocycloid[4],
        hypocycloid[8],
        hypocycloid[16],
        hypocycloid[32],
        hypocycloid[64],
        ImageSize -> 500
        ]


        Mathematica graphics



        I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



        How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



        mediant[a_, b_, c_, d_] := a + c, b + d
        recursive[v1_, v2_, depth_] := If[
        depth > 2,
        mediant[v1, v2],
        recursive[v1, mediant[v1, v2], depth + 1],
        mediant[v1, v2],
        recursive[mediant[v1, v2], v2, depth + 1]
        ]

        computeLabels[v1_, v2_] := Module[numbers,
        numbers =
        Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
        StringTemplate["``/``"] @@@ numbers
        ]
        computeLabelsNegative[v1_, v2_] := Module[numbers,
        numbers =
        Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
        StringTemplate["-`2`/`1`"] @@@ numbers
        ]

        labels = Reverse@Join[
        "1/0",
        computeLabels[1, 0, 1, 1],
        "1/1",
        computeLabels[1, 1, 0, 1],
        "0/1",
        computeLabelsNegative[1, 0, 1, 1],
        "-1,1",
        computeLabelsNegative[1, 1, 0, 1]
        ];

        coords = CirclePoints[1.1, 186 Degree, 64];

        Show[
        Graphics[Circle[0, 0, 1]],
        hypocycloid[2],
        hypocycloid[4],
        hypocycloid[8],
        hypocycloid[16],
        hypocycloid[32],
        hypocycloid[64],
        Graphics@MapThread[Text, labels, coords],
        ImageSize -> 500
        ]


        Mathematica graphics






        share|improve this answer











        $endgroup$















          6












          6








          6





          $begingroup$

          The curvilinear triangles which are characteristic for this type of plot are called hypocyloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



          x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
          y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
          hypocycloid[n_] := ParametricPlot[
          x[1/n, 1, t], y[1/n, 1, t],
          t, 0, 2 Pi,
          PlotStyle -> Thickness[0.002], Black
          ]

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          ImageSize -> 500
          ]


          Mathematica graphics



          I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



          How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



          mediant[a_, b_, c_, d_] := a + c, b + d
          recursive[v1_, v2_, depth_] := If[
          depth > 2,
          mediant[v1, v2],
          recursive[v1, mediant[v1, v2], depth + 1],
          mediant[v1, v2],
          recursive[mediant[v1, v2], v2, depth + 1]
          ]

          computeLabels[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["``/``"] @@@ numbers
          ]
          computeLabelsNegative[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["-`2`/`1`"] @@@ numbers
          ]

          labels = Reverse@Join[
          "1/0",
          computeLabels[1, 0, 1, 1],
          "1/1",
          computeLabels[1, 1, 0, 1],
          "0/1",
          computeLabelsNegative[1, 0, 1, 1],
          "-1,1",
          computeLabelsNegative[1, 1, 0, 1]
          ];

          coords = CirclePoints[1.1, 186 Degree, 64];

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          Graphics@MapThread[Text, labels, coords],
          ImageSize -> 500
          ]


          Mathematica graphics






          share|improve this answer











          $endgroup$



          The curvilinear triangles which are characteristic for this type of plot are called hypocyloid curves. We can use the parametric equations on Wikipedia to plot these, like so:



          x[a_, b_, t_] := (b - a) Cos[t] + a Cos[(b - a)/a t]
          y[a_, b_, t_] := (b - a) Sin[t] - a Sin[(b - a)/a t]
          hypocycloid[n_] := ParametricPlot[
          x[1/n, 1, t], y[1/n, 1, t],
          t, 0, 2 Pi,
          PlotStyle -> Thickness[0.002], Black
          ]

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          ImageSize -> 500
          ]


          Mathematica graphics



          I've previously written about an application of hypocycloids here, and I showed how to visualize epicycloids here.



          How to generate the labels is described here (also linked to by moo in a comment). I will simply provide the code.



          mediant[a_, b_, c_, d_] := a + c, b + d
          recursive[v1_, v2_, depth_] := If[
          depth > 2,
          mediant[v1, v2],
          recursive[v1, mediant[v1, v2], depth + 1],
          mediant[v1, v2],
          recursive[mediant[v1, v2], v2, depth + 1]
          ]

          computeLabels[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["``/``"] @@@ numbers
          ]
          computeLabelsNegative[v1_, v2_] := Module[numbers,
          numbers =
          Cases[recursive[v1, v2, 0], _Integer, _Integer, Infinity];
          StringTemplate["-`2`/`1`"] @@@ numbers
          ]

          labels = Reverse@Join[
          "1/0",
          computeLabels[1, 0, 1, 1],
          "1/1",
          computeLabels[1, 1, 0, 1],
          "0/1",
          computeLabelsNegative[1, 0, 1, 1],
          "-1,1",
          computeLabelsNegative[1, 1, 0, 1]
          ];

          coords = CirclePoints[1.1, 186 Degree, 64];

          Show[
          Graphics[Circle[0, 0, 1]],
          hypocycloid[2],
          hypocycloid[4],
          hypocycloid[8],
          hypocycloid[16],
          hypocycloid[32],
          hypocycloid[64],
          Graphics@MapThread[Text, labels, coords],
          ImageSize -> 500
          ]


          Mathematica graphics







          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited 2 hours ago

























          answered 2 hours ago









          C. E.C. E.

          51.1k3101206




          51.1k3101206





















              2












              $begingroup$

              I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



              On that basis, you can generate the sequence as follows, for instance:



              ClearAll[farey]
              farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


              So for instance:



              farey[5]



              0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




              I am not sure how these sequences are connected with the figure you showed though.






              share|improve this answer









              $endgroup$

















                2












                $begingroup$

                I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



                On that basis, you can generate the sequence as follows, for instance:



                ClearAll[farey]
                farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


                So for instance:



                farey[5]



                0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




                I am not sure how these sequences are connected with the figure you showed though.






                share|improve this answer









                $endgroup$















                  2












                  2








                  2





                  $begingroup$

                  I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



                  On that basis, you can generate the sequence as follows, for instance:



                  ClearAll[farey]
                  farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


                  So for instance:



                  farey[5]



                  0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




                  I am not sure how these sequences are connected with the figure you showed though.






                  share|improve this answer









                  $endgroup$



                  I looked up the Farey sequence on Wikipedia, out of curiosity, because I had not heard of it before. The Farey sequence of order $n$ is "the sequence of completely reduced fractions between 0 and 1 which, when in lowest terms, have denominators less than or equal to $n$, arranged in order of increasing size".



                  On that basis, you can generate the sequence as follows, for instance:



                  ClearAll[farey]
                  farey[n_Integer] := (Divide @@@ Subsets[Range[n], 2]) ~ Join ~ 0, 1 //DeleteDuplicates //Sort


                  So for instance:



                  farey[5]



                  0, 1/5, 1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 1




                  I am not sure how these sequences are connected with the figure you showed though.







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 8 hours ago









                  MarcoBMarcoB

                  38.6k557115




                  38.6k557115




















                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.









                      draft saved

                      draft discarded


















                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.












                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.











                      Gustavo Rubiano is a new contributor. Be nice, and check out our Code of Conduct.














                      Thanks for contributing an answer to Mathematica Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid


                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.

                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function ()
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f194838%2fhow-can-i-plot-a-farey-diagram%23new-answer', 'question_page');

                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Log på Navigationsmenu

                      Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                      Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5