Proof involving the spectral radius and the Jordan canonical form Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Spectral radius of the Volterra operatorExample that the Jordan canonical form is not “robust.”The unit vector in the direction of uWhat is the purpose of Jordan Canonical Form?Confusion between spectral radius of matrix and spectral radius of the operatorComputing the Jordan Form of a MatrixSpectral radius of perturbed bipartite graphsA proof involving invertible $ntimes n$ matricesProof of Gelfand's formula without using $rho(A) < 1$ iff $lim A^n = 0$Computing Canonical Jordan Form over a field $mathbbQ$

Single word antonym of "flightless"

How do I stop a creek from eroding my steep embankment?

When -s is used with third person singular. What's its use in this context?

Did Kevin spill real chili?

What are 'alternative tunings' of a guitar and why would you use them? Doesn't it make it more difficult to play?

Do you forfeit tax refunds/credits if you aren't required to and don't file by April 15?

How can I fade player when goes inside or outside of the area?

Models of set theory where not every set can be linearly ordered

Why is "Consequences inflicted." not a sentence?

I am not a queen, who am I?

Why does Python start at index -1 when indexing a list from the end?

How widely used is the term Treppenwitz? Is it something that most Germans know?

If a contract sometimes uses the wrong name, is it still valid?

How to recreate this effect in Photoshop?

Difference between these two cards?

What is the correct way to use the pinch test for dehydration?

How to motivate offshore teams and trust them to deliver?

How does a Death Domain cleric's Touch of Death feature work with Touch-range spells delivered by familiars?

What are the pros and cons of Aerospike nosecones?

Are my PIs rude or am I just being too sensitive?

Does surprise arrest existing movement?

How to deal with a team lead who never gives me credit?

Antler Helmet: Can it work?

Can a non-EU citizen traveling with me come with me through the EU passport line?



Proof involving the spectral radius and the Jordan canonical form



Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Spectral radius of the Volterra operatorExample that the Jordan canonical form is not “robust.”The unit vector in the direction of uWhat is the purpose of Jordan Canonical Form?Confusion between spectral radius of matrix and spectral radius of the operatorComputing the Jordan Form of a MatrixSpectral radius of perturbed bipartite graphsA proof involving invertible $ntimes n$ matricesProof of Gelfand's formula without using $rho(A) < 1$ iff $lim A^n = 0$Computing Canonical Jordan Form over a field $mathbbQ$










2












$begingroup$



Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



Hint: Use the Jordan canonical form.




I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










share|cite|improve this question











$endgroup$
















    2












    $begingroup$



    Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



    Hint: Use the Jordan canonical form.




    I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










    share|cite|improve this question











    $endgroup$














      2












      2








      2





      $begingroup$



      Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



      Hint: Use the Jordan canonical form.




      I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.










      share|cite|improve this question











      $endgroup$





      Let $A$ be a square matrix. Show that if $$lim_n to infty A^n = 0$$ then $rho(A) < 1$, where $rho(A)$ denotes the spectral radius of $A$.



      Hint: Use the Jordan canonical form.




      I am self-studying and have been working through a few linear algebra exercises. I'm struggling a bit in applying the hint to this problem — I don't know where to start. Any help appreciated.







      linear-algebra matrices jordan-normal-form spectral-radius






      share|cite|improve this question















      share|cite|improve this question













      share|cite|improve this question




      share|cite|improve this question








      edited 11 mins ago









      Rodrigo de Azevedo

      13.2k41961




      13.2k41961










      asked 1 hour ago









      mXdXmXdX

      1068




      1068




















          2 Answers
          2






          active

          oldest

          votes


















          5












          $begingroup$

          You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






          share|cite|improve this answer









          $endgroup$




















            2












            $begingroup$

            Hint



            $$A=PJP^-1 \
            J=beginbmatrix
            lambda_1 & * & 0 & 0 & 0 & ... & 0 \
            0& lambda_2 & * & 0 & 0 & ... & 0 \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n \
            endbmatrix$$

            where each $*$ is either $0$ or $1$.



            Prove by induction that
            $$J^m=beginbmatrix
            lambda_1^m & star & star & star & star & ... & star \
            0& lambda_2^m & star & star & star & ... & star \
            ...&...&...&...&....&....&....\
            0 & 0 & 0 & 0&0&...&lambda_n^m \
            endbmatrix$$

            where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
            with the $m$^th powers of the eigenvalues on the diagonal.



            Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






            share|cite|improve this answer









            $endgroup$












            • $begingroup$
              So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
              $endgroup$
              – mXdX
              56 mins ago










            • $begingroup$
              @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
              $endgroup$
              – N. S.
              51 mins ago










            • $begingroup$
              I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
              $endgroup$
              – mXdX
              46 mins ago











            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "69"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-the-jordan-canonical-form%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            5












            $begingroup$

            You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






            share|cite|improve this answer









            $endgroup$

















              5












              $begingroup$

              You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






              share|cite|improve this answer









              $endgroup$















                5












                5








                5





                $begingroup$

                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.






                share|cite|improve this answer









                $endgroup$



                You don't really need Jordan canonical form. If $rho(A) ge 1$, $A$ has an eigenvalue $lambda$ with $|lambda| ge 1$. That eigenvalue has an eigenvector $v$. Then $A^n v = lambda^n v$, so $|A^n v| = |lambda|^n |v| ge |v|$ does not go to $0$ as $n to infty$, which is impossible if $A^n to 0$.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 1 hour ago









                Robert IsraelRobert Israel

                332k23221478




                332k23221478





















                    2












                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      56 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      51 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      46 mins ago















                    2












                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$












                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      56 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      51 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      46 mins ago













                    2












                    2








                    2





                    $begingroup$

                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.






                    share|cite|improve this answer









                    $endgroup$



                    Hint



                    $$A=PJP^-1 \
                    J=beginbmatrix
                    lambda_1 & * & 0 & 0 & 0 & ... & 0 \
                    0& lambda_2 & * & 0 & 0 & ... & 0 \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n \
                    endbmatrix$$

                    where each $*$ is either $0$ or $1$.



                    Prove by induction that
                    $$J^m=beginbmatrix
                    lambda_1^m & star & star & star & star & ... & star \
                    0& lambda_2^m & star & star & star & ... & star \
                    ...&...&...&...&....&....&....\
                    0 & 0 & 0 & 0&0&...&lambda_n^m \
                    endbmatrix$$

                    where the $star$s represent numbers, that is $J^m$ is an upper triangular matrix
                    with the $m$^th powers of the eigenvalues on the diagonal.



                    Note The above claim for $J^m$ is not fully using that $J$ is a Jordan cannonical form. It only uses that $J$ is upper triangular.







                    share|cite|improve this answer












                    share|cite|improve this answer



                    share|cite|improve this answer










                    answered 1 hour ago









                    N. S.N. S.

                    105k7115210




                    105k7115210











                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      56 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      51 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      46 mins ago
















                    • $begingroup$
                      So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                      $endgroup$
                      – mXdX
                      56 mins ago










                    • $begingroup$
                      @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                      $endgroup$
                      – N. S.
                      51 mins ago










                    • $begingroup$
                      I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                      $endgroup$
                      – mXdX
                      46 mins ago















                    $begingroup$
                    So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    56 mins ago




                    $begingroup$
                    So, $A^m = PJ^mP^-1$. If I can show what you're asking by induction, would the limit of $J^m = 0$? I'm sure it is because the diagonal entries are less than one, right?
                    $endgroup$
                    – mXdX
                    56 mins ago












                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    51 mins ago




                    $begingroup$
                    @mXdX Well, that is the point. First $$lim_m J^m= lim_m P^-1 A^m P =0$$ Now, since $lim J^m=0$ you can deduce that the diagonal entries converge to zero, meaning $lambda_j^m to 0$. This implies that $|lambda_j |<1$
                    $endgroup$
                    – N. S.
                    51 mins ago












                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    46 mins ago




                    $begingroup$
                    I understand now. Thanks. So I would have to show, like you said, that the diagonal entries of $J^m$ are the $m$th powers of the eigenvalues.
                    $endgroup$
                    – mXdX
                    46 mins ago

















                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Mathematics Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3189376%2fproof-involving-the-spectral-radius-and-the-jordan-canonical-form%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Log på Navigationsmenu

                    Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                    Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5