Existence of a model of ZFC in which the natural numbers are really the natural numbersClearing misconceptions: Defining “is a model of ZFC” in ZFCZ_2 versus second-order PAAxiom to exclude nonstandard natural numbersModels of the natural numbers in ultrapowers in the universe.Are there non-commutative models of arithmetic which have a prime number structure?Recursive Non-standard Models of Modular Arithmetic?Peano (Dedekind) categoricityIs every order type of a PA model the omega of some ZFC model?Do the analogies between metamathematics of set theory and arithmetic have some deeper meaning?Why are model theorists free to use GCH and other semi-axioms?
Existence of a model of ZFC in which the natural numbers are really the natural numbers
Clearing misconceptions: Defining “is a model of ZFC” in ZFCZ_2 versus second-order PAAxiom to exclude nonstandard natural numbersModels of the natural numbers in ultrapowers in the universe.Are there non-commutative models of arithmetic which have a prime number structure?Recursive Non-standard Models of Modular Arithmetic?Peano (Dedekind) categoricityIs every order type of a PA model the omega of some ZFC model?Do the analogies between metamathematics of set theory and arithmetic have some deeper meaning?Why are model theorists free to use GCH and other semi-axioms?
$begingroup$
I know that, from compactness theorem, one can prove that there are models of first order arithmetic in which there is some "number" which is not a successor of zero, in the sense that it is strictly bigger than any successor of zero (i.e. any element of the model obtained by applying the successor function to zero finitely many times).
From the axiom of infinity, it follows that every model of ZFC must contain an element which one can think of as "the natural numbers", in the sense that it is a model of Peano Axioms. Peano Axioms are a second-order theory, since the principle of induction is a second order axiom, and from the principle of induction it follows that the Peano Axioms have a unique model in ZFC, so that we can call this model among the others of first-order arithmetic, the "standard" model of arithmetic.
But picking one model of ZFC, how do we know what's really inside its standard model of arithmetic? How do we know there is nothing else than the successors of zero? After all, every model of ZFC thinks that his natural numbers are the standard ones, so one can use compactness to produce a model of ZFC which has non-standard natural numbers from an external point of view, and in which there will be a standard natural numbers object containing elements bigger than any successor of zero.
So, if one wants to do mathematics inside a model of a first order theory of sets, how can one know that he is able to pick a model in which the natural numbers are not non-standard?
set-theory model-theory peano-arithmetic
$endgroup$
add a comment |
$begingroup$
I know that, from compactness theorem, one can prove that there are models of first order arithmetic in which there is some "number" which is not a successor of zero, in the sense that it is strictly bigger than any successor of zero (i.e. any element of the model obtained by applying the successor function to zero finitely many times).
From the axiom of infinity, it follows that every model of ZFC must contain an element which one can think of as "the natural numbers", in the sense that it is a model of Peano Axioms. Peano Axioms are a second-order theory, since the principle of induction is a second order axiom, and from the principle of induction it follows that the Peano Axioms have a unique model in ZFC, so that we can call this model among the others of first-order arithmetic, the "standard" model of arithmetic.
But picking one model of ZFC, how do we know what's really inside its standard model of arithmetic? How do we know there is nothing else than the successors of zero? After all, every model of ZFC thinks that his natural numbers are the standard ones, so one can use compactness to produce a model of ZFC which has non-standard natural numbers from an external point of view, and in which there will be a standard natural numbers object containing elements bigger than any successor of zero.
So, if one wants to do mathematics inside a model of a first order theory of sets, how can one know that he is able to pick a model in which the natural numbers are not non-standard?
set-theory model-theory peano-arithmetic
$endgroup$
add a comment |
$begingroup$
I know that, from compactness theorem, one can prove that there are models of first order arithmetic in which there is some "number" which is not a successor of zero, in the sense that it is strictly bigger than any successor of zero (i.e. any element of the model obtained by applying the successor function to zero finitely many times).
From the axiom of infinity, it follows that every model of ZFC must contain an element which one can think of as "the natural numbers", in the sense that it is a model of Peano Axioms. Peano Axioms are a second-order theory, since the principle of induction is a second order axiom, and from the principle of induction it follows that the Peano Axioms have a unique model in ZFC, so that we can call this model among the others of first-order arithmetic, the "standard" model of arithmetic.
But picking one model of ZFC, how do we know what's really inside its standard model of arithmetic? How do we know there is nothing else than the successors of zero? After all, every model of ZFC thinks that his natural numbers are the standard ones, so one can use compactness to produce a model of ZFC which has non-standard natural numbers from an external point of view, and in which there will be a standard natural numbers object containing elements bigger than any successor of zero.
So, if one wants to do mathematics inside a model of a first order theory of sets, how can one know that he is able to pick a model in which the natural numbers are not non-standard?
set-theory model-theory peano-arithmetic
$endgroup$
I know that, from compactness theorem, one can prove that there are models of first order arithmetic in which there is some "number" which is not a successor of zero, in the sense that it is strictly bigger than any successor of zero (i.e. any element of the model obtained by applying the successor function to zero finitely many times).
From the axiom of infinity, it follows that every model of ZFC must contain an element which one can think of as "the natural numbers", in the sense that it is a model of Peano Axioms. Peano Axioms are a second-order theory, since the principle of induction is a second order axiom, and from the principle of induction it follows that the Peano Axioms have a unique model in ZFC, so that we can call this model among the others of first-order arithmetic, the "standard" model of arithmetic.
But picking one model of ZFC, how do we know what's really inside its standard model of arithmetic? How do we know there is nothing else than the successors of zero? After all, every model of ZFC thinks that his natural numbers are the standard ones, so one can use compactness to produce a model of ZFC which has non-standard natural numbers from an external point of view, and in which there will be a standard natural numbers object containing elements bigger than any successor of zero.
So, if one wants to do mathematics inside a model of a first order theory of sets, how can one know that he is able to pick a model in which the natural numbers are not non-standard?
set-theory model-theory peano-arithmetic
set-theory model-theory peano-arithmetic
edited 1 hour ago
GLe
asked 1 hour ago
GLeGLe
275
275
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
This, in fact, cannot be proven, even in $ZFC+Con(ZFC)$. This is because $ZFC$ proves the following statement:
If we have a model $M$ of $ZFC$ whose natural numbers are standard, then $M$ satisfies $ZFC+Con(ZFC)$.
Indeed, $Con(ZFC)$ is an arithmetic statement. Since we are assuming that $ZFC$ has a model $M$, and hence that $ZFC$ is consistent, $mathbb NvDash Con(ZFC)$, and since $mathbb N^Mcongmathbb N$, $mathbb N^MvDash Con(ZFC)$, and hence $MvDash Con(ZFC)$.
Now if $ZFC$ could prove "if there is a model of $ZFC$, then there is a model of $ZFC$ with standard $mathbb N$", then we would get that $ZFC+Con(ZFC)$ proves that $ZFC+Con(ZFC)$ has a model, contradicting Godel's second incompleteness theorem.
Therefore, we cannot conclude, from existence of a model, existence of a model with standard $mathbb N$.
Thought it might be worth mentioning that this reasoning is under the assumption that $ZFC+Con(ZFC)$ is consistent. In the other case, $ZFC$ proves that $ZFC$ has no models, so the implication I discuss holds vacuously.
$endgroup$
$begingroup$
I like this answer, but why is the existence of a model of ZFC an arithmetic statement? Is it a standard fact?
$endgroup$
– GLe
1 hour ago
$begingroup$
By Godel's completeness theorem, "ZFC has a model" is equivalent to "ZFC does not prove contradiction", and the latter can be expressed as an arithmetic statement. For instance, if you are familiar with how Turing machines can be encoded arithmetically, ZFC not proving a contradiction is equivalent to a certain TM not halting.
$endgroup$
– Wojowu
1 hour ago
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "504"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f331897%2fexistence-of-a-model-of-zfc-in-which-the-natural-numbers-are-really-the-natural%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
This, in fact, cannot be proven, even in $ZFC+Con(ZFC)$. This is because $ZFC$ proves the following statement:
If we have a model $M$ of $ZFC$ whose natural numbers are standard, then $M$ satisfies $ZFC+Con(ZFC)$.
Indeed, $Con(ZFC)$ is an arithmetic statement. Since we are assuming that $ZFC$ has a model $M$, and hence that $ZFC$ is consistent, $mathbb NvDash Con(ZFC)$, and since $mathbb N^Mcongmathbb N$, $mathbb N^MvDash Con(ZFC)$, and hence $MvDash Con(ZFC)$.
Now if $ZFC$ could prove "if there is a model of $ZFC$, then there is a model of $ZFC$ with standard $mathbb N$", then we would get that $ZFC+Con(ZFC)$ proves that $ZFC+Con(ZFC)$ has a model, contradicting Godel's second incompleteness theorem.
Therefore, we cannot conclude, from existence of a model, existence of a model with standard $mathbb N$.
Thought it might be worth mentioning that this reasoning is under the assumption that $ZFC+Con(ZFC)$ is consistent. In the other case, $ZFC$ proves that $ZFC$ has no models, so the implication I discuss holds vacuously.
$endgroup$
$begingroup$
I like this answer, but why is the existence of a model of ZFC an arithmetic statement? Is it a standard fact?
$endgroup$
– GLe
1 hour ago
$begingroup$
By Godel's completeness theorem, "ZFC has a model" is equivalent to "ZFC does not prove contradiction", and the latter can be expressed as an arithmetic statement. For instance, if you are familiar with how Turing machines can be encoded arithmetically, ZFC not proving a contradiction is equivalent to a certain TM not halting.
$endgroup$
– Wojowu
1 hour ago
add a comment |
$begingroup$
This, in fact, cannot be proven, even in $ZFC+Con(ZFC)$. This is because $ZFC$ proves the following statement:
If we have a model $M$ of $ZFC$ whose natural numbers are standard, then $M$ satisfies $ZFC+Con(ZFC)$.
Indeed, $Con(ZFC)$ is an arithmetic statement. Since we are assuming that $ZFC$ has a model $M$, and hence that $ZFC$ is consistent, $mathbb NvDash Con(ZFC)$, and since $mathbb N^Mcongmathbb N$, $mathbb N^MvDash Con(ZFC)$, and hence $MvDash Con(ZFC)$.
Now if $ZFC$ could prove "if there is a model of $ZFC$, then there is a model of $ZFC$ with standard $mathbb N$", then we would get that $ZFC+Con(ZFC)$ proves that $ZFC+Con(ZFC)$ has a model, contradicting Godel's second incompleteness theorem.
Therefore, we cannot conclude, from existence of a model, existence of a model with standard $mathbb N$.
Thought it might be worth mentioning that this reasoning is under the assumption that $ZFC+Con(ZFC)$ is consistent. In the other case, $ZFC$ proves that $ZFC$ has no models, so the implication I discuss holds vacuously.
$endgroup$
$begingroup$
I like this answer, but why is the existence of a model of ZFC an arithmetic statement? Is it a standard fact?
$endgroup$
– GLe
1 hour ago
$begingroup$
By Godel's completeness theorem, "ZFC has a model" is equivalent to "ZFC does not prove contradiction", and the latter can be expressed as an arithmetic statement. For instance, if you are familiar with how Turing machines can be encoded arithmetically, ZFC not proving a contradiction is equivalent to a certain TM not halting.
$endgroup$
– Wojowu
1 hour ago
add a comment |
$begingroup$
This, in fact, cannot be proven, even in $ZFC+Con(ZFC)$. This is because $ZFC$ proves the following statement:
If we have a model $M$ of $ZFC$ whose natural numbers are standard, then $M$ satisfies $ZFC+Con(ZFC)$.
Indeed, $Con(ZFC)$ is an arithmetic statement. Since we are assuming that $ZFC$ has a model $M$, and hence that $ZFC$ is consistent, $mathbb NvDash Con(ZFC)$, and since $mathbb N^Mcongmathbb N$, $mathbb N^MvDash Con(ZFC)$, and hence $MvDash Con(ZFC)$.
Now if $ZFC$ could prove "if there is a model of $ZFC$, then there is a model of $ZFC$ with standard $mathbb N$", then we would get that $ZFC+Con(ZFC)$ proves that $ZFC+Con(ZFC)$ has a model, contradicting Godel's second incompleteness theorem.
Therefore, we cannot conclude, from existence of a model, existence of a model with standard $mathbb N$.
Thought it might be worth mentioning that this reasoning is under the assumption that $ZFC+Con(ZFC)$ is consistent. In the other case, $ZFC$ proves that $ZFC$ has no models, so the implication I discuss holds vacuously.
$endgroup$
This, in fact, cannot be proven, even in $ZFC+Con(ZFC)$. This is because $ZFC$ proves the following statement:
If we have a model $M$ of $ZFC$ whose natural numbers are standard, then $M$ satisfies $ZFC+Con(ZFC)$.
Indeed, $Con(ZFC)$ is an arithmetic statement. Since we are assuming that $ZFC$ has a model $M$, and hence that $ZFC$ is consistent, $mathbb NvDash Con(ZFC)$, and since $mathbb N^Mcongmathbb N$, $mathbb N^MvDash Con(ZFC)$, and hence $MvDash Con(ZFC)$.
Now if $ZFC$ could prove "if there is a model of $ZFC$, then there is a model of $ZFC$ with standard $mathbb N$", then we would get that $ZFC+Con(ZFC)$ proves that $ZFC+Con(ZFC)$ has a model, contradicting Godel's second incompleteness theorem.
Therefore, we cannot conclude, from existence of a model, existence of a model with standard $mathbb N$.
Thought it might be worth mentioning that this reasoning is under the assumption that $ZFC+Con(ZFC)$ is consistent. In the other case, $ZFC$ proves that $ZFC$ has no models, so the implication I discuss holds vacuously.
edited 52 mins ago
answered 1 hour ago
WojowuWojowu
7,47213259
7,47213259
$begingroup$
I like this answer, but why is the existence of a model of ZFC an arithmetic statement? Is it a standard fact?
$endgroup$
– GLe
1 hour ago
$begingroup$
By Godel's completeness theorem, "ZFC has a model" is equivalent to "ZFC does not prove contradiction", and the latter can be expressed as an arithmetic statement. For instance, if you are familiar with how Turing machines can be encoded arithmetically, ZFC not proving a contradiction is equivalent to a certain TM not halting.
$endgroup$
– Wojowu
1 hour ago
add a comment |
$begingroup$
I like this answer, but why is the existence of a model of ZFC an arithmetic statement? Is it a standard fact?
$endgroup$
– GLe
1 hour ago
$begingroup$
By Godel's completeness theorem, "ZFC has a model" is equivalent to "ZFC does not prove contradiction", and the latter can be expressed as an arithmetic statement. For instance, if you are familiar with how Turing machines can be encoded arithmetically, ZFC not proving a contradiction is equivalent to a certain TM not halting.
$endgroup$
– Wojowu
1 hour ago
$begingroup$
I like this answer, but why is the existence of a model of ZFC an arithmetic statement? Is it a standard fact?
$endgroup$
– GLe
1 hour ago
$begingroup$
I like this answer, but why is the existence of a model of ZFC an arithmetic statement? Is it a standard fact?
$endgroup$
– GLe
1 hour ago
$begingroup$
By Godel's completeness theorem, "ZFC has a model" is equivalent to "ZFC does not prove contradiction", and the latter can be expressed as an arithmetic statement. For instance, if you are familiar with how Turing machines can be encoded arithmetically, ZFC not proving a contradiction is equivalent to a certain TM not halting.
$endgroup$
– Wojowu
1 hour ago
$begingroup$
By Godel's completeness theorem, "ZFC has a model" is equivalent to "ZFC does not prove contradiction", and the latter can be expressed as an arithmetic statement. For instance, if you are familiar with how Turing machines can be encoded arithmetically, ZFC not proving a contradiction is equivalent to a certain TM not halting.
$endgroup$
– Wojowu
1 hour ago
add a comment |
Thanks for contributing an answer to MathOverflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f331897%2fexistence-of-a-model-of-zfc-in-which-the-natural-numbers-are-really-the-natural%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown