Python Pandas Expand a Column of List of Lists to Two New ColumnPandas split column of lists into multiple columnsFinding the index of an item given a list containing it in PythonConvert two lists into a dictionary in PythonPython join: why is it string.join(list) instead of list.join(string)?Getting the last element of a list in PythonHow do I get the number of elements in a list in Python?How do I concatenate two lists in Python?Renaming columns in pandasAdding new column to existing DataFrame in Python pandasDelete column from pandas DataFrame by column nameSelect rows from a DataFrame based on values in a column in pandas

What is the best way for a skeleton to impersonate human without using magic?

Smallest Guaranteed hash collision cycle length

Is the schwa sound consistent?

Plastic-on-plastic lubricant that wont leave a residue?

Why was castling bad for white in this game, and engine strongly prefered trading queens?

Who was this character from the Tomb of Annihilation adventure before they became a monster?

Size of a folder with du

Ex-manager wants to stay in touch, I don't want to

Why does getw return -1 when trying to read a character?

Can the sorting of a list be verified without comparing neighbors?

Front derailleur hard to move due to gear cable angle

Why was the Ancient One so hesitant to teach Dr. Strange the art of sorcery?

Early arrival in Australia, early hotel check in not available

A cryptic tricolour

What are the components of a legend (in the sense of a tale, not a figure legend)?

As programers say: Strive to be lazy

How can I answer high-school writing prompts without sounding weird and fake?

Why doesn't Rocket Lab use a solid stage?

Reaction of borax with NaOH

Why does my circuit work on a breadboard, but not on a perfboard? I am new to soldering

Two researchers want to work on the same extension to my paper. Who to help?

What to do if SUS scores contradict qualitative feedback?

How to make a language evolve quickly?

What does a comma mean inside an 'if' statement?



Python Pandas Expand a Column of List of Lists to Two New Column


Pandas split column of lists into multiple columnsFinding the index of an item given a list containing it in PythonConvert two lists into a dictionary in PythonPython join: why is it string.join(list) instead of list.join(string)?Getting the last element of a list in PythonHow do I get the number of elements in a list in Python?How do I concatenate two lists in Python?Renaming columns in pandasAdding new column to existing DataFrame in Python pandasDelete column from pandas DataFrame by column nameSelect rows from a DataFrame based on values in a column in pandas






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








6















I have a DF which looks like this.



name id apps
john 1 [[app1, v1], [app2, v2], [app3,v3]]
smith 2 [[app1, v1], [app4, v4]]


I want to expand the apps column such that it looks like this.



name id app_name app_version
john 1 app1 v1
john 1 app2 v2
john 1 app3 v3
smith 2 app1 v1
smith 2 app4 v4


Any help is appreciated










share|improve this question




























    6















    I have a DF which looks like this.



    name id apps
    john 1 [[app1, v1], [app2, v2], [app3,v3]]
    smith 2 [[app1, v1], [app4, v4]]


    I want to expand the apps column such that it looks like this.



    name id app_name app_version
    john 1 app1 v1
    john 1 app2 v2
    john 1 app3 v3
    smith 2 app1 v1
    smith 2 app4 v4


    Any help is appreciated










    share|improve this question
























      6












      6








      6








      I have a DF which looks like this.



      name id apps
      john 1 [[app1, v1], [app2, v2], [app3,v3]]
      smith 2 [[app1, v1], [app4, v4]]


      I want to expand the apps column such that it looks like this.



      name id app_name app_version
      john 1 app1 v1
      john 1 app2 v2
      john 1 app3 v3
      smith 2 app1 v1
      smith 2 app4 v4


      Any help is appreciated










      share|improve this question














      I have a DF which looks like this.



      name id apps
      john 1 [[app1, v1], [app2, v2], [app3,v3]]
      smith 2 [[app1, v1], [app4, v4]]


      I want to expand the apps column such that it looks like this.



      name id app_name app_version
      john 1 app1 v1
      john 1 app2 v2
      john 1 app3 v3
      smith 2 app1 v1
      smith 2 app4 v4


      Any help is appreciated







      python pandas list






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 3 hours ago









      ImsaImsa

      392424




      392424






















          3 Answers
          3






          active

          oldest

          votes


















          2














          You can .apply(pd.Series) twice to get what you need as an intermediate step, then merge back to the original dataframe.



          import pandas as pd

          df = pd.DataFrame(
          'name': ['john', 'smith'],
          'id': [1, 2],
          'apps': [[['app1', 'v1'], ['app2', 'v2'], ['app3','v3']],
          [['app1', 'v1'], ['app4', 'v4']]]
          )

          dftmp = df.apps.apply(pd.Series).T.melt().dropna()
          dfapp = (dftmp.value
          .apply(pd.Series)
          .set_index(dftmp.variable)
          .rename(columns=0:'app_name', 1:'app_version')
          )

          df[['name', 'id']].merge(dfapp, left_index=True, right_index=True)
          # returns:
          name id app_name app_version
          0 john 1 app1 v1
          0 john 1 app2 v2
          0 john 1 app3 v3
          1 smith 2 app1 v1
          1 smith 2 app4 v4





          share|improve this answer























          • Instead of .apply(pd.Series) (which is awfully slow), use pd.DataFrame(df.apps.tolist())

            – RafaelC
            2 hours ago











          • Either way you are pulling it out of the C-backed API into Python. .apply hides a for loop, while tolist pushes the encapsulated object back to Python. I have not done any tests to see which is faster.

            – James
            2 hours ago











          • I have, that's why I commented.

            – RafaelC
            1 hour ago











          • Can also refer here for details

            – RafaelC
            1 hour ago






          • 1





            Wow, thanks. That is like 30% faster.

            – James
            1 hour ago


















          2














          You can always have a brute force solution. Something like:



          name, id, app_name, app_version = [], [], [], []
          for i in range(len(df)):
          for v in df.loc[i,'apps']:
          app_name.append(v[0])
          app_version.append(v[1])
          name.append(df.loc[i, 'name'])
          id.append(df.loc[i, 'id'])
          df = pd.DataFrame('name': name, 'id': id, 'app_name': app_name, 'app_version': app_version)


          will do the work.



          Note that I assumed df['apps'] is lists of strings if df['apps'] is strings then you need: eval(df.loc[i,'apps']) instead of df.loc[i,'apps']






          share|improve this answer

























          • Even though this works, it is probably unfeasible for large data frames. In pandas, one for loop is already bad enough, so imagine two nested for loops ;} Always try to avoid direct iteration !

            – RafaelC
            2 hours ago


















          1














          My suggestion (there may be easier ways) is using DataFrame.apply alongside pd.concat:



          import pandas as pd

          def expand_row(row):
          apps = row.apps
          apps_names = [app[0] for app in apps]
          apps_versions = [app[1] for app in apps]
          return pd.DataFrame(
          'name': row.name,
          'id': row.id,
          'app_name': apps_names,
          'app_version': apps_versions
          )

          df = pd.DataFrame(
          'name': ['john', 'smith'],
          'id': [1, 2],
          'apps': [[['app1', 'v1'], ['app2', 'v2'], ['app3','v3']],
          [['app1', 'v1'], ['app4', 'v4']]]
          )
          temp_dfs = df.apply(expand_row, axis=1).tolist()
          expanded = pd.concat(temp_dfs)

          print(expanded)

          # name id app_name app_version
          # 0 0 1 app1 v1
          # 1 0 1 app2 v2
          # 2 0 1 app3 v3
          # 0 1 2 app1 v1
          # 1 1 2 app4 v4





          share|improve this answer

























            Your Answer






            StackExchange.ifUsing("editor", function ()
            StackExchange.using("externalEditor", function ()
            StackExchange.using("snippets", function ()
            StackExchange.snippets.init();
            );
            );
            , "code-snippets");

            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "1"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f56095142%2fpython-pandas-expand-a-column-of-list-of-lists-to-two-new-column%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            3 Answers
            3






            active

            oldest

            votes








            3 Answers
            3






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2














            You can .apply(pd.Series) twice to get what you need as an intermediate step, then merge back to the original dataframe.



            import pandas as pd

            df = pd.DataFrame(
            'name': ['john', 'smith'],
            'id': [1, 2],
            'apps': [[['app1', 'v1'], ['app2', 'v2'], ['app3','v3']],
            [['app1', 'v1'], ['app4', 'v4']]]
            )

            dftmp = df.apps.apply(pd.Series).T.melt().dropna()
            dfapp = (dftmp.value
            .apply(pd.Series)
            .set_index(dftmp.variable)
            .rename(columns=0:'app_name', 1:'app_version')
            )

            df[['name', 'id']].merge(dfapp, left_index=True, right_index=True)
            # returns:
            name id app_name app_version
            0 john 1 app1 v1
            0 john 1 app2 v2
            0 john 1 app3 v3
            1 smith 2 app1 v1
            1 smith 2 app4 v4





            share|improve this answer























            • Instead of .apply(pd.Series) (which is awfully slow), use pd.DataFrame(df.apps.tolist())

              – RafaelC
              2 hours ago











            • Either way you are pulling it out of the C-backed API into Python. .apply hides a for loop, while tolist pushes the encapsulated object back to Python. I have not done any tests to see which is faster.

              – James
              2 hours ago











            • I have, that's why I commented.

              – RafaelC
              1 hour ago











            • Can also refer here for details

              – RafaelC
              1 hour ago






            • 1





              Wow, thanks. That is like 30% faster.

              – James
              1 hour ago















            2














            You can .apply(pd.Series) twice to get what you need as an intermediate step, then merge back to the original dataframe.



            import pandas as pd

            df = pd.DataFrame(
            'name': ['john', 'smith'],
            'id': [1, 2],
            'apps': [[['app1', 'v1'], ['app2', 'v2'], ['app3','v3']],
            [['app1', 'v1'], ['app4', 'v4']]]
            )

            dftmp = df.apps.apply(pd.Series).T.melt().dropna()
            dfapp = (dftmp.value
            .apply(pd.Series)
            .set_index(dftmp.variable)
            .rename(columns=0:'app_name', 1:'app_version')
            )

            df[['name', 'id']].merge(dfapp, left_index=True, right_index=True)
            # returns:
            name id app_name app_version
            0 john 1 app1 v1
            0 john 1 app2 v2
            0 john 1 app3 v3
            1 smith 2 app1 v1
            1 smith 2 app4 v4





            share|improve this answer























            • Instead of .apply(pd.Series) (which is awfully slow), use pd.DataFrame(df.apps.tolist())

              – RafaelC
              2 hours ago











            • Either way you are pulling it out of the C-backed API into Python. .apply hides a for loop, while tolist pushes the encapsulated object back to Python. I have not done any tests to see which is faster.

              – James
              2 hours ago











            • I have, that's why I commented.

              – RafaelC
              1 hour ago











            • Can also refer here for details

              – RafaelC
              1 hour ago






            • 1





              Wow, thanks. That is like 30% faster.

              – James
              1 hour ago













            2












            2








            2







            You can .apply(pd.Series) twice to get what you need as an intermediate step, then merge back to the original dataframe.



            import pandas as pd

            df = pd.DataFrame(
            'name': ['john', 'smith'],
            'id': [1, 2],
            'apps': [[['app1', 'v1'], ['app2', 'v2'], ['app3','v3']],
            [['app1', 'v1'], ['app4', 'v4']]]
            )

            dftmp = df.apps.apply(pd.Series).T.melt().dropna()
            dfapp = (dftmp.value
            .apply(pd.Series)
            .set_index(dftmp.variable)
            .rename(columns=0:'app_name', 1:'app_version')
            )

            df[['name', 'id']].merge(dfapp, left_index=True, right_index=True)
            # returns:
            name id app_name app_version
            0 john 1 app1 v1
            0 john 1 app2 v2
            0 john 1 app3 v3
            1 smith 2 app1 v1
            1 smith 2 app4 v4





            share|improve this answer













            You can .apply(pd.Series) twice to get what you need as an intermediate step, then merge back to the original dataframe.



            import pandas as pd

            df = pd.DataFrame(
            'name': ['john', 'smith'],
            'id': [1, 2],
            'apps': [[['app1', 'v1'], ['app2', 'v2'], ['app3','v3']],
            [['app1', 'v1'], ['app4', 'v4']]]
            )

            dftmp = df.apps.apply(pd.Series).T.melt().dropna()
            dfapp = (dftmp.value
            .apply(pd.Series)
            .set_index(dftmp.variable)
            .rename(columns=0:'app_name', 1:'app_version')
            )

            df[['name', 'id']].merge(dfapp, left_index=True, right_index=True)
            # returns:
            name id app_name app_version
            0 john 1 app1 v1
            0 john 1 app2 v2
            0 john 1 app3 v3
            1 smith 2 app1 v1
            1 smith 2 app4 v4






            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 2 hours ago









            JamesJames

            14.4k11733




            14.4k11733












            • Instead of .apply(pd.Series) (which is awfully slow), use pd.DataFrame(df.apps.tolist())

              – RafaelC
              2 hours ago











            • Either way you are pulling it out of the C-backed API into Python. .apply hides a for loop, while tolist pushes the encapsulated object back to Python. I have not done any tests to see which is faster.

              – James
              2 hours ago











            • I have, that's why I commented.

              – RafaelC
              1 hour ago











            • Can also refer here for details

              – RafaelC
              1 hour ago






            • 1





              Wow, thanks. That is like 30% faster.

              – James
              1 hour ago

















            • Instead of .apply(pd.Series) (which is awfully slow), use pd.DataFrame(df.apps.tolist())

              – RafaelC
              2 hours ago











            • Either way you are pulling it out of the C-backed API into Python. .apply hides a for loop, while tolist pushes the encapsulated object back to Python. I have not done any tests to see which is faster.

              – James
              2 hours ago











            • I have, that's why I commented.

              – RafaelC
              1 hour ago











            • Can also refer here for details

              – RafaelC
              1 hour ago






            • 1





              Wow, thanks. That is like 30% faster.

              – James
              1 hour ago
















            Instead of .apply(pd.Series) (which is awfully slow), use pd.DataFrame(df.apps.tolist())

            – RafaelC
            2 hours ago





            Instead of .apply(pd.Series) (which is awfully slow), use pd.DataFrame(df.apps.tolist())

            – RafaelC
            2 hours ago













            Either way you are pulling it out of the C-backed API into Python. .apply hides a for loop, while tolist pushes the encapsulated object back to Python. I have not done any tests to see which is faster.

            – James
            2 hours ago





            Either way you are pulling it out of the C-backed API into Python. .apply hides a for loop, while tolist pushes the encapsulated object back to Python. I have not done any tests to see which is faster.

            – James
            2 hours ago













            I have, that's why I commented.

            – RafaelC
            1 hour ago





            I have, that's why I commented.

            – RafaelC
            1 hour ago













            Can also refer here for details

            – RafaelC
            1 hour ago





            Can also refer here for details

            – RafaelC
            1 hour ago




            1




            1





            Wow, thanks. That is like 30% faster.

            – James
            1 hour ago





            Wow, thanks. That is like 30% faster.

            – James
            1 hour ago













            2














            You can always have a brute force solution. Something like:



            name, id, app_name, app_version = [], [], [], []
            for i in range(len(df)):
            for v in df.loc[i,'apps']:
            app_name.append(v[0])
            app_version.append(v[1])
            name.append(df.loc[i, 'name'])
            id.append(df.loc[i, 'id'])
            df = pd.DataFrame('name': name, 'id': id, 'app_name': app_name, 'app_version': app_version)


            will do the work.



            Note that I assumed df['apps'] is lists of strings if df['apps'] is strings then you need: eval(df.loc[i,'apps']) instead of df.loc[i,'apps']






            share|improve this answer

























            • Even though this works, it is probably unfeasible for large data frames. In pandas, one for loop is already bad enough, so imagine two nested for loops ;} Always try to avoid direct iteration !

              – RafaelC
              2 hours ago















            2














            You can always have a brute force solution. Something like:



            name, id, app_name, app_version = [], [], [], []
            for i in range(len(df)):
            for v in df.loc[i,'apps']:
            app_name.append(v[0])
            app_version.append(v[1])
            name.append(df.loc[i, 'name'])
            id.append(df.loc[i, 'id'])
            df = pd.DataFrame('name': name, 'id': id, 'app_name': app_name, 'app_version': app_version)


            will do the work.



            Note that I assumed df['apps'] is lists of strings if df['apps'] is strings then you need: eval(df.loc[i,'apps']) instead of df.loc[i,'apps']






            share|improve this answer

























            • Even though this works, it is probably unfeasible for large data frames. In pandas, one for loop is already bad enough, so imagine two nested for loops ;} Always try to avoid direct iteration !

              – RafaelC
              2 hours ago













            2












            2








            2







            You can always have a brute force solution. Something like:



            name, id, app_name, app_version = [], [], [], []
            for i in range(len(df)):
            for v in df.loc[i,'apps']:
            app_name.append(v[0])
            app_version.append(v[1])
            name.append(df.loc[i, 'name'])
            id.append(df.loc[i, 'id'])
            df = pd.DataFrame('name': name, 'id': id, 'app_name': app_name, 'app_version': app_version)


            will do the work.



            Note that I assumed df['apps'] is lists of strings if df['apps'] is strings then you need: eval(df.loc[i,'apps']) instead of df.loc[i,'apps']






            share|improve this answer















            You can always have a brute force solution. Something like:



            name, id, app_name, app_version = [], [], [], []
            for i in range(len(df)):
            for v in df.loc[i,'apps']:
            app_name.append(v[0])
            app_version.append(v[1])
            name.append(df.loc[i, 'name'])
            id.append(df.loc[i, 'id'])
            df = pd.DataFrame('name': name, 'id': id, 'app_name': app_name, 'app_version': app_version)


            will do the work.



            Note that I assumed df['apps'] is lists of strings if df['apps'] is strings then you need: eval(df.loc[i,'apps']) instead of df.loc[i,'apps']







            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited 2 hours ago

























            answered 2 hours ago









            MaPyMaPy

            16726




            16726












            • Even though this works, it is probably unfeasible for large data frames. In pandas, one for loop is already bad enough, so imagine two nested for loops ;} Always try to avoid direct iteration !

              – RafaelC
              2 hours ago

















            • Even though this works, it is probably unfeasible for large data frames. In pandas, one for loop is already bad enough, so imagine two nested for loops ;} Always try to avoid direct iteration !

              – RafaelC
              2 hours ago
















            Even though this works, it is probably unfeasible for large data frames. In pandas, one for loop is already bad enough, so imagine two nested for loops ;} Always try to avoid direct iteration !

            – RafaelC
            2 hours ago





            Even though this works, it is probably unfeasible for large data frames. In pandas, one for loop is already bad enough, so imagine two nested for loops ;} Always try to avoid direct iteration !

            – RafaelC
            2 hours ago











            1














            My suggestion (there may be easier ways) is using DataFrame.apply alongside pd.concat:



            import pandas as pd

            def expand_row(row):
            apps = row.apps
            apps_names = [app[0] for app in apps]
            apps_versions = [app[1] for app in apps]
            return pd.DataFrame(
            'name': row.name,
            'id': row.id,
            'app_name': apps_names,
            'app_version': apps_versions
            )

            df = pd.DataFrame(
            'name': ['john', 'smith'],
            'id': [1, 2],
            'apps': [[['app1', 'v1'], ['app2', 'v2'], ['app3','v3']],
            [['app1', 'v1'], ['app4', 'v4']]]
            )
            temp_dfs = df.apply(expand_row, axis=1).tolist()
            expanded = pd.concat(temp_dfs)

            print(expanded)

            # name id app_name app_version
            # 0 0 1 app1 v1
            # 1 0 1 app2 v2
            # 2 0 1 app3 v3
            # 0 1 2 app1 v1
            # 1 1 2 app4 v4





            share|improve this answer





























              1














              My suggestion (there may be easier ways) is using DataFrame.apply alongside pd.concat:



              import pandas as pd

              def expand_row(row):
              apps = row.apps
              apps_names = [app[0] for app in apps]
              apps_versions = [app[1] for app in apps]
              return pd.DataFrame(
              'name': row.name,
              'id': row.id,
              'app_name': apps_names,
              'app_version': apps_versions
              )

              df = pd.DataFrame(
              'name': ['john', 'smith'],
              'id': [1, 2],
              'apps': [[['app1', 'v1'], ['app2', 'v2'], ['app3','v3']],
              [['app1', 'v1'], ['app4', 'v4']]]
              )
              temp_dfs = df.apply(expand_row, axis=1).tolist()
              expanded = pd.concat(temp_dfs)

              print(expanded)

              # name id app_name app_version
              # 0 0 1 app1 v1
              # 1 0 1 app2 v2
              # 2 0 1 app3 v3
              # 0 1 2 app1 v1
              # 1 1 2 app4 v4





              share|improve this answer



























                1












                1








                1







                My suggestion (there may be easier ways) is using DataFrame.apply alongside pd.concat:



                import pandas as pd

                def expand_row(row):
                apps = row.apps
                apps_names = [app[0] for app in apps]
                apps_versions = [app[1] for app in apps]
                return pd.DataFrame(
                'name': row.name,
                'id': row.id,
                'app_name': apps_names,
                'app_version': apps_versions
                )

                df = pd.DataFrame(
                'name': ['john', 'smith'],
                'id': [1, 2],
                'apps': [[['app1', 'v1'], ['app2', 'v2'], ['app3','v3']],
                [['app1', 'v1'], ['app4', 'v4']]]
                )
                temp_dfs = df.apply(expand_row, axis=1).tolist()
                expanded = pd.concat(temp_dfs)

                print(expanded)

                # name id app_name app_version
                # 0 0 1 app1 v1
                # 1 0 1 app2 v2
                # 2 0 1 app3 v3
                # 0 1 2 app1 v1
                # 1 1 2 app4 v4





                share|improve this answer















                My suggestion (there may be easier ways) is using DataFrame.apply alongside pd.concat:



                import pandas as pd

                def expand_row(row):
                apps = row.apps
                apps_names = [app[0] for app in apps]
                apps_versions = [app[1] for app in apps]
                return pd.DataFrame(
                'name': row.name,
                'id': row.id,
                'app_name': apps_names,
                'app_version': apps_versions
                )

                df = pd.DataFrame(
                'name': ['john', 'smith'],
                'id': [1, 2],
                'apps': [[['app1', 'v1'], ['app2', 'v2'], ['app3','v3']],
                [['app1', 'v1'], ['app4', 'v4']]]
                )
                temp_dfs = df.apply(expand_row, axis=1).tolist()
                expanded = pd.concat(temp_dfs)

                print(expanded)

                # name id app_name app_version
                # 0 0 1 app1 v1
                # 1 0 1 app2 v2
                # 2 0 1 app3 v3
                # 0 1 2 app1 v1
                # 1 1 2 app4 v4






                share|improve this answer














                share|improve this answer



                share|improve this answer








                edited 2 hours ago

























                answered 2 hours ago









                araraonlineararaonline

                643313




                643313



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f56095142%2fpython-pandas-expand-a-column-of-list-of-lists-to-two-new-column%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Log på Navigationsmenu

                    Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                    Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5