Which “exotic salt” can lower water's freezing point by –70 °C?When it rains, it puddles. Spilled salt cycles between wet and dry with humidity. Is this akin to a phase change?How can melting point equal freezing point?What non-toxic non-water substances have a freezing point very close to water's?How can water exist in three states in freezing point?How to determine which aqueous solution has the largest freezing point depressionCan any solute be used to lower the freezing point of water?Does this freezing point depression problem make sense?Why is the melting point of a substance is the same as its freezing point?Freezing point of oxygen-18 waterDepression of freezing pointFreezing point depression of salt solutions

Is there a word for food that's gone 'bad', but is still edible?

How to calculate rate of axial precession?

How do I, as a DM, handle a party that decides to set up an ambush in a dungeon?

In "Avengers: Endgame", what does this name refer to?

Dangerous workplace travelling

Is there precedent or are there procedures for a US president refusing to concede to an electoral defeat?

Who filmed the Apollo 11 trans-lunar injection?

Does running exec do anything?

Is disk brake effectiveness mitigated by tyres losing traction under strong braking?

Why did WWI include Japan?

Why would one crossvalidate the random state number?

Is any special diet an effective treatment of autism?

Page count conversion from single to double-space for submissions

Piano: quaver triplets in RH v dotted quaver and semiquaver in LH

When did England stop being a Papal fief?

Execute command on shell command output

Why is "breaking the mould" positively connoted?

Would a small hole in a Faraday cage drastically reduce its effectiveness at blocking interference?

It isn’t that you must stop now

weird pluperfect subjunctive in Eutropius

Is space itself expanding or is it just momentum from the big bang carrying things apart?

Why does blending blueberries, milk, banana and vanilla extract cause the mixture to have a yogurty consistency?

How to pass hash as password to ssh server

Dirichlet series with a single zero



Which “exotic salt” can lower water's freezing point by –70 °C?


When it rains, it puddles. Spilled salt cycles between wet and dry with humidity. Is this akin to a phase change?How can melting point equal freezing point?What non-toxic non-water substances have a freezing point very close to water's?How can water exist in three states in freezing point?How to determine which aqueous solution has the largest freezing point depressionCan any solute be used to lower the freezing point of water?Does this freezing point depression problem make sense?Why is the melting point of a substance is the same as its freezing point?Freezing point of oxygen-18 waterDepression of freezing pointFreezing point depression of salt solutions













4












$begingroup$


The Medium.com article Mars Phoenix Lander, 10 Years Later shows several remarkable images and discoveries on Mars by the Mars Phoenix Lander circa 2008.



One image (shown below) shows what looks like droplets of liquid water, condensed on the surface of one of the lander's legs.



The article says (emphasis mine):




Shortly after landing, the camera on Phoenix’s robotic arm captured views of blobs of material on one of the landing struts. Over time, these blobs moved, darkened, and coalesced, behaving like droplets of liquid water. The hypothesis here was that these blobs “splashed up” on the struts when the descent thrusters melted the ice exposed upon landing mentioned above.



But if liquid water isn’t stable on the martian surface, how did Phoenix observe liquid water on Mars? The key here lies in salt. If you live anywhere that gets snow, you’re probably familiar with salt as a de-icer for roads, sidewalks, etc. Salt lowers the freezing point of water, allowing it to remain liquid at temperatures lower than that of non-salty water. For example, pure water freezes at 0 °C/32 °F, but ocean saltwater freezes around −2 °C/28.4 °F. While the de-icing salts you get at the hardware store lower the freezing point by a few degrees, more exotic salts can lower the freezing point as much as −70 °C/−89 °F! Phoenix discovered some of these exotic salts in the soil around the lander—in particular, magnesium perchlorate. (note, minor editorial changes have been made)





Question: Which "exotic salt" can lower water's freezing point by −70 °C?



Is it in fact magnesium perchlorate (which was found on Mars) or is it a different salt?




enter image description here




Blobs of possible brine (really salty water) imaged on one of Phoenix’s landing struts shortly after arriving on Mars. Credit: NASA/JPL-Caltech/University of Arizona/Max Planck Institute











share|improve this question











$endgroup$







  • 2




    $begingroup$
    You know why freezing point of water is decreased by using salt? It is because of relative lowering in vapour pressure which depends on number of particles present in solution, it doesn't matter whatever sizes are or whatever the salt is, the necessary conditions are that the substance you are mixing must be non volatile and it must be a solution. So basically the more salt you mix the lower the freezing point is but there is a limit on how much you can mix salt in water. And freezing point is decreased by a few degrees only. -70° is like a dream. the text you are reading might be wrong.
    $endgroup$
    – Saurav Singh
    1 hour ago










  • $begingroup$
    Also -70 C seems awful cold for a super cooled liquid.
    $endgroup$
    – MaxW
    1 hour ago






  • 2




    $begingroup$
    @SauravSingh, vapor pressure has nothing to do with freezing point, though it does affect the boiling point.
    $endgroup$
    – DrMoishe Pippik
    1 hour ago






  • 1




    $begingroup$
    @andselisk the information within the quote might be (infinitesimally) more accurate, but it becomes a less accurate quote. I think altering text and presenting it as a quote without making note that it's been altered is a slippery slope. In the case of the block quote, you did not edit my post, you revised a third party's work.
    $endgroup$
    – uhoh
    26 mins ago







  • 1




    $begingroup$
    @andselisk I'm saying that the deed itself is inappropriate. I recommend you do not alter quoted text anywhere in Stack Exchange without making note of it at the site of the quote itself, where the reader notices it.
    $endgroup$
    – uhoh
    20 mins ago
















4












$begingroup$


The Medium.com article Mars Phoenix Lander, 10 Years Later shows several remarkable images and discoveries on Mars by the Mars Phoenix Lander circa 2008.



One image (shown below) shows what looks like droplets of liquid water, condensed on the surface of one of the lander's legs.



The article says (emphasis mine):




Shortly after landing, the camera on Phoenix’s robotic arm captured views of blobs of material on one of the landing struts. Over time, these blobs moved, darkened, and coalesced, behaving like droplets of liquid water. The hypothesis here was that these blobs “splashed up” on the struts when the descent thrusters melted the ice exposed upon landing mentioned above.



But if liquid water isn’t stable on the martian surface, how did Phoenix observe liquid water on Mars? The key here lies in salt. If you live anywhere that gets snow, you’re probably familiar with salt as a de-icer for roads, sidewalks, etc. Salt lowers the freezing point of water, allowing it to remain liquid at temperatures lower than that of non-salty water. For example, pure water freezes at 0 °C/32 °F, but ocean saltwater freezes around −2 °C/28.4 °F. While the de-icing salts you get at the hardware store lower the freezing point by a few degrees, more exotic salts can lower the freezing point as much as −70 °C/−89 °F! Phoenix discovered some of these exotic salts in the soil around the lander—in particular, magnesium perchlorate. (note, minor editorial changes have been made)





Question: Which "exotic salt" can lower water's freezing point by −70 °C?



Is it in fact magnesium perchlorate (which was found on Mars) or is it a different salt?




enter image description here




Blobs of possible brine (really salty water) imaged on one of Phoenix’s landing struts shortly after arriving on Mars. Credit: NASA/JPL-Caltech/University of Arizona/Max Planck Institute











share|improve this question











$endgroup$







  • 2




    $begingroup$
    You know why freezing point of water is decreased by using salt? It is because of relative lowering in vapour pressure which depends on number of particles present in solution, it doesn't matter whatever sizes are or whatever the salt is, the necessary conditions are that the substance you are mixing must be non volatile and it must be a solution. So basically the more salt you mix the lower the freezing point is but there is a limit on how much you can mix salt in water. And freezing point is decreased by a few degrees only. -70° is like a dream. the text you are reading might be wrong.
    $endgroup$
    – Saurav Singh
    1 hour ago










  • $begingroup$
    Also -70 C seems awful cold for a super cooled liquid.
    $endgroup$
    – MaxW
    1 hour ago






  • 2




    $begingroup$
    @SauravSingh, vapor pressure has nothing to do with freezing point, though it does affect the boiling point.
    $endgroup$
    – DrMoishe Pippik
    1 hour ago






  • 1




    $begingroup$
    @andselisk the information within the quote might be (infinitesimally) more accurate, but it becomes a less accurate quote. I think altering text and presenting it as a quote without making note that it's been altered is a slippery slope. In the case of the block quote, you did not edit my post, you revised a third party's work.
    $endgroup$
    – uhoh
    26 mins ago







  • 1




    $begingroup$
    @andselisk I'm saying that the deed itself is inappropriate. I recommend you do not alter quoted text anywhere in Stack Exchange without making note of it at the site of the quote itself, where the reader notices it.
    $endgroup$
    – uhoh
    20 mins ago














4












4








4


0



$begingroup$


The Medium.com article Mars Phoenix Lander, 10 Years Later shows several remarkable images and discoveries on Mars by the Mars Phoenix Lander circa 2008.



One image (shown below) shows what looks like droplets of liquid water, condensed on the surface of one of the lander's legs.



The article says (emphasis mine):




Shortly after landing, the camera on Phoenix’s robotic arm captured views of blobs of material on one of the landing struts. Over time, these blobs moved, darkened, and coalesced, behaving like droplets of liquid water. The hypothesis here was that these blobs “splashed up” on the struts when the descent thrusters melted the ice exposed upon landing mentioned above.



But if liquid water isn’t stable on the martian surface, how did Phoenix observe liquid water on Mars? The key here lies in salt. If you live anywhere that gets snow, you’re probably familiar with salt as a de-icer for roads, sidewalks, etc. Salt lowers the freezing point of water, allowing it to remain liquid at temperatures lower than that of non-salty water. For example, pure water freezes at 0 °C/32 °F, but ocean saltwater freezes around −2 °C/28.4 °F. While the de-icing salts you get at the hardware store lower the freezing point by a few degrees, more exotic salts can lower the freezing point as much as −70 °C/−89 °F! Phoenix discovered some of these exotic salts in the soil around the lander—in particular, magnesium perchlorate. (note, minor editorial changes have been made)





Question: Which "exotic salt" can lower water's freezing point by −70 °C?



Is it in fact magnesium perchlorate (which was found on Mars) or is it a different salt?




enter image description here




Blobs of possible brine (really salty water) imaged on one of Phoenix’s landing struts shortly after arriving on Mars. Credit: NASA/JPL-Caltech/University of Arizona/Max Planck Institute











share|improve this question











$endgroup$




The Medium.com article Mars Phoenix Lander, 10 Years Later shows several remarkable images and discoveries on Mars by the Mars Phoenix Lander circa 2008.



One image (shown below) shows what looks like droplets of liquid water, condensed on the surface of one of the lander's legs.



The article says (emphasis mine):




Shortly after landing, the camera on Phoenix’s robotic arm captured views of blobs of material on one of the landing struts. Over time, these blobs moved, darkened, and coalesced, behaving like droplets of liquid water. The hypothesis here was that these blobs “splashed up” on the struts when the descent thrusters melted the ice exposed upon landing mentioned above.



But if liquid water isn’t stable on the martian surface, how did Phoenix observe liquid water on Mars? The key here lies in salt. If you live anywhere that gets snow, you’re probably familiar with salt as a de-icer for roads, sidewalks, etc. Salt lowers the freezing point of water, allowing it to remain liquid at temperatures lower than that of non-salty water. For example, pure water freezes at 0 °C/32 °F, but ocean saltwater freezes around −2 °C/28.4 °F. While the de-icing salts you get at the hardware store lower the freezing point by a few degrees, more exotic salts can lower the freezing point as much as −70 °C/−89 °F! Phoenix discovered some of these exotic salts in the soil around the lander—in particular, magnesium perchlorate. (note, minor editorial changes have been made)





Question: Which "exotic salt" can lower water's freezing point by −70 °C?



Is it in fact magnesium perchlorate (which was found on Mars) or is it a different salt?




enter image description here




Blobs of possible brine (really salty water) imaged on one of Phoenix’s landing struts shortly after arriving on Mars. Credit: NASA/JPL-Caltech/University of Arizona/Max Planck Institute








inorganic-chemistry aqueous-solution phase






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 29 mins ago









andselisk

20.4k669133




20.4k669133










asked 2 hours ago









uhohuhoh

2,1261246




2,1261246







  • 2




    $begingroup$
    You know why freezing point of water is decreased by using salt? It is because of relative lowering in vapour pressure which depends on number of particles present in solution, it doesn't matter whatever sizes are or whatever the salt is, the necessary conditions are that the substance you are mixing must be non volatile and it must be a solution. So basically the more salt you mix the lower the freezing point is but there is a limit on how much you can mix salt in water. And freezing point is decreased by a few degrees only. -70° is like a dream. the text you are reading might be wrong.
    $endgroup$
    – Saurav Singh
    1 hour ago










  • $begingroup$
    Also -70 C seems awful cold for a super cooled liquid.
    $endgroup$
    – MaxW
    1 hour ago






  • 2




    $begingroup$
    @SauravSingh, vapor pressure has nothing to do with freezing point, though it does affect the boiling point.
    $endgroup$
    – DrMoishe Pippik
    1 hour ago






  • 1




    $begingroup$
    @andselisk the information within the quote might be (infinitesimally) more accurate, but it becomes a less accurate quote. I think altering text and presenting it as a quote without making note that it's been altered is a slippery slope. In the case of the block quote, you did not edit my post, you revised a third party's work.
    $endgroup$
    – uhoh
    26 mins ago







  • 1




    $begingroup$
    @andselisk I'm saying that the deed itself is inappropriate. I recommend you do not alter quoted text anywhere in Stack Exchange without making note of it at the site of the quote itself, where the reader notices it.
    $endgroup$
    – uhoh
    20 mins ago













  • 2




    $begingroup$
    You know why freezing point of water is decreased by using salt? It is because of relative lowering in vapour pressure which depends on number of particles present in solution, it doesn't matter whatever sizes are or whatever the salt is, the necessary conditions are that the substance you are mixing must be non volatile and it must be a solution. So basically the more salt you mix the lower the freezing point is but there is a limit on how much you can mix salt in water. And freezing point is decreased by a few degrees only. -70° is like a dream. the text you are reading might be wrong.
    $endgroup$
    – Saurav Singh
    1 hour ago










  • $begingroup$
    Also -70 C seems awful cold for a super cooled liquid.
    $endgroup$
    – MaxW
    1 hour ago






  • 2




    $begingroup$
    @SauravSingh, vapor pressure has nothing to do with freezing point, though it does affect the boiling point.
    $endgroup$
    – DrMoishe Pippik
    1 hour ago






  • 1




    $begingroup$
    @andselisk the information within the quote might be (infinitesimally) more accurate, but it becomes a less accurate quote. I think altering text and presenting it as a quote without making note that it's been altered is a slippery slope. In the case of the block quote, you did not edit my post, you revised a third party's work.
    $endgroup$
    – uhoh
    26 mins ago







  • 1




    $begingroup$
    @andselisk I'm saying that the deed itself is inappropriate. I recommend you do not alter quoted text anywhere in Stack Exchange without making note of it at the site of the quote itself, where the reader notices it.
    $endgroup$
    – uhoh
    20 mins ago








2




2




$begingroup$
You know why freezing point of water is decreased by using salt? It is because of relative lowering in vapour pressure which depends on number of particles present in solution, it doesn't matter whatever sizes are or whatever the salt is, the necessary conditions are that the substance you are mixing must be non volatile and it must be a solution. So basically the more salt you mix the lower the freezing point is but there is a limit on how much you can mix salt in water. And freezing point is decreased by a few degrees only. -70° is like a dream. the text you are reading might be wrong.
$endgroup$
– Saurav Singh
1 hour ago




$begingroup$
You know why freezing point of water is decreased by using salt? It is because of relative lowering in vapour pressure which depends on number of particles present in solution, it doesn't matter whatever sizes are or whatever the salt is, the necessary conditions are that the substance you are mixing must be non volatile and it must be a solution. So basically the more salt you mix the lower the freezing point is but there is a limit on how much you can mix salt in water. And freezing point is decreased by a few degrees only. -70° is like a dream. the text you are reading might be wrong.
$endgroup$
– Saurav Singh
1 hour ago












$begingroup$
Also -70 C seems awful cold for a super cooled liquid.
$endgroup$
– MaxW
1 hour ago




$begingroup$
Also -70 C seems awful cold for a super cooled liquid.
$endgroup$
– MaxW
1 hour ago




2




2




$begingroup$
@SauravSingh, vapor pressure has nothing to do with freezing point, though it does affect the boiling point.
$endgroup$
– DrMoishe Pippik
1 hour ago




$begingroup$
@SauravSingh, vapor pressure has nothing to do with freezing point, though it does affect the boiling point.
$endgroup$
– DrMoishe Pippik
1 hour ago




1




1




$begingroup$
@andselisk the information within the quote might be (infinitesimally) more accurate, but it becomes a less accurate quote. I think altering text and presenting it as a quote without making note that it's been altered is a slippery slope. In the case of the block quote, you did not edit my post, you revised a third party's work.
$endgroup$
– uhoh
26 mins ago





$begingroup$
@andselisk the information within the quote might be (infinitesimally) more accurate, but it becomes a less accurate quote. I think altering text and presenting it as a quote without making note that it's been altered is a slippery slope. In the case of the block quote, you did not edit my post, you revised a third party's work.
$endgroup$
– uhoh
26 mins ago





1




1




$begingroup$
@andselisk I'm saying that the deed itself is inappropriate. I recommend you do not alter quoted text anywhere in Stack Exchange without making note of it at the site of the quote itself, where the reader notices it.
$endgroup$
– uhoh
20 mins ago





$begingroup$
@andselisk I'm saying that the deed itself is inappropriate. I recommend you do not alter quoted text anywhere in Stack Exchange without making note of it at the site of the quote itself, where the reader notices it.
$endgroup$
– uhoh
20 mins ago











2 Answers
2






active

oldest

votes


















4












$begingroup$

I recently got a chance to attend a talk by someone who was working on developing analytical instrumentation on Mars. The interesting story is that the initial results by ion-selective electrode was that Mars soil is full of nitrates. Nobody knew on Earth that the nitrate ion selective electrode is far more responsive to perchlorate than nitrate. After learning this, it was an eye opener for analytical chemists! Now they wish to use chromatography rather than electrochemistry. So this was a good lesson for us on Earth.



Now that they know it is a perchlorate ion, people did some studies on supercooled brines. See this paper: The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars J.D. Toner, D.C. Catling, and B. Light, Icarus, 233, 1 May 2014, pp 36-47 (also available here). They clearly show that if calcium or magnesium perchlorates are slowly cooled, one can get supercooled brines up to -120 Celcius. This is a rather amazing finding. They call it a glassy state.






share|improve this answer











$endgroup$












  • $begingroup$
    "Nobody knew on Earth" (!!) Let's add this to the list of "Reasons to go to Mars" ;-)
    $endgroup$
    – uhoh
    55 mins ago







  • 1




    $begingroup$
    Yes it was a surprising finding because everyone used nitrate selective electrodes without ever realizing that it also responds to perchlorate far more effectively.
    $endgroup$
    – M. Farooq
    53 mins ago


















1












$begingroup$


Your Question: Which "exotic salt" can lower water's freezing point by $pu-70 ^circ C$?




Here is your "exotic compound" although it is not a salt by definition. It is a base: Aqua ammonia, also called ammoniacal liquor, ammonia liquor, or ammonia water, is produced by dissolving ammonia gas ($ceNH3$) in water. The proper chemical name of aqua ammonia is ammonium hydroxide ($ceNH4OH$), which is in following equilibrium with water:
$$ceNH3 + H2O <=> NH4+ + OH-$$



Ammonia is very soluble in water: According to Wikipedia, its solubility in water is $47% (w/w)$ at $pu0 ^circ C$, $31% (w/w)$ at $pu25 ^circ C$, and $18% (w/w)$ at $pu50 ^circ C$. Therefore it is ideal to cause large freezing point depression since its solubility increases with decreasing temperature. Now, let's see how are the freezing points of aqua ammonia solutions behave with increasing concentrations. The large scale manufacturer of aqua ammonia, Tanner Industries, listed following values of boiling and freezing points of various solutions in its Customer Manual:
$$
beginarrayccc \hline
% ceNH3 text (by weight) & textApprox. Boiling point & text Approx. Freezing point \hline
23.52 & pu103 ^circ F: (pu39.4 ^circ C) & pu-56 ^circ F: ( pu-48.9 ^circ C)\
25.48 & pu95 ^circ F: (pu35.0 ^circ C) & pu-69 ^circ F : ( pu-56.1 ^circ C)\
27.44 & pu88 ^circ F : (pu31.1 ^circ C) & pu-89 ^circ F: ( pu-67.2 ^circ C)\
29.40 & pu85 ^circ F: (pu29.4 ^circ C) & pu-110 ^circ F : ( pu-78.9 ^circ C)\
31.36 & pu73 ^circ F: (pu22.8 ^circ C) & pu-123 ^circ F : ( pu-86.1 ^circ C)\
33.32 & pu66 ^circ F : (pu18.9 ^circ C) & pu-148 ^circ F: ( pu-100 ^circ C)\hline
endarray
$$



Accordingly, anything between $29-33%$ of aqua ammonia solution would do the job.





share









$endgroup$












  • $begingroup$
    I'll give you +1 for creativity, though I'm not sure if others will. I've really asked for a salt.
    $endgroup$
    – uhoh
    2 mins ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "431"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f114837%2fwhich-exotic-salt-can-lower-waters-freezing-point-by-70-c%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

I recently got a chance to attend a talk by someone who was working on developing analytical instrumentation on Mars. The interesting story is that the initial results by ion-selective electrode was that Mars soil is full of nitrates. Nobody knew on Earth that the nitrate ion selective electrode is far more responsive to perchlorate than nitrate. After learning this, it was an eye opener for analytical chemists! Now they wish to use chromatography rather than electrochemistry. So this was a good lesson for us on Earth.



Now that they know it is a perchlorate ion, people did some studies on supercooled brines. See this paper: The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars J.D. Toner, D.C. Catling, and B. Light, Icarus, 233, 1 May 2014, pp 36-47 (also available here). They clearly show that if calcium or magnesium perchlorates are slowly cooled, one can get supercooled brines up to -120 Celcius. This is a rather amazing finding. They call it a glassy state.






share|improve this answer











$endgroup$












  • $begingroup$
    "Nobody knew on Earth" (!!) Let's add this to the list of "Reasons to go to Mars" ;-)
    $endgroup$
    – uhoh
    55 mins ago







  • 1




    $begingroup$
    Yes it was a surprising finding because everyone used nitrate selective electrodes without ever realizing that it also responds to perchlorate far more effectively.
    $endgroup$
    – M. Farooq
    53 mins ago















4












$begingroup$

I recently got a chance to attend a talk by someone who was working on developing analytical instrumentation on Mars. The interesting story is that the initial results by ion-selective electrode was that Mars soil is full of nitrates. Nobody knew on Earth that the nitrate ion selective electrode is far more responsive to perchlorate than nitrate. After learning this, it was an eye opener for analytical chemists! Now they wish to use chromatography rather than electrochemistry. So this was a good lesson for us on Earth.



Now that they know it is a perchlorate ion, people did some studies on supercooled brines. See this paper: The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars J.D. Toner, D.C. Catling, and B. Light, Icarus, 233, 1 May 2014, pp 36-47 (also available here). They clearly show that if calcium or magnesium perchlorates are slowly cooled, one can get supercooled brines up to -120 Celcius. This is a rather amazing finding. They call it a glassy state.






share|improve this answer











$endgroup$












  • $begingroup$
    "Nobody knew on Earth" (!!) Let's add this to the list of "Reasons to go to Mars" ;-)
    $endgroup$
    – uhoh
    55 mins ago







  • 1




    $begingroup$
    Yes it was a surprising finding because everyone used nitrate selective electrodes without ever realizing that it also responds to perchlorate far more effectively.
    $endgroup$
    – M. Farooq
    53 mins ago













4












4








4





$begingroup$

I recently got a chance to attend a talk by someone who was working on developing analytical instrumentation on Mars. The interesting story is that the initial results by ion-selective electrode was that Mars soil is full of nitrates. Nobody knew on Earth that the nitrate ion selective electrode is far more responsive to perchlorate than nitrate. After learning this, it was an eye opener for analytical chemists! Now they wish to use chromatography rather than electrochemistry. So this was a good lesson for us on Earth.



Now that they know it is a perchlorate ion, people did some studies on supercooled brines. See this paper: The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars J.D. Toner, D.C. Catling, and B. Light, Icarus, 233, 1 May 2014, pp 36-47 (also available here). They clearly show that if calcium or magnesium perchlorates are slowly cooled, one can get supercooled brines up to -120 Celcius. This is a rather amazing finding. They call it a glassy state.






share|improve this answer











$endgroup$



I recently got a chance to attend a talk by someone who was working on developing analytical instrumentation on Mars. The interesting story is that the initial results by ion-selective electrode was that Mars soil is full of nitrates. Nobody knew on Earth that the nitrate ion selective electrode is far more responsive to perchlorate than nitrate. After learning this, it was an eye opener for analytical chemists! Now they wish to use chromatography rather than electrochemistry. So this was a good lesson for us on Earth.



Now that they know it is a perchlorate ion, people did some studies on supercooled brines. See this paper: The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars J.D. Toner, D.C. Catling, and B. Light, Icarus, 233, 1 May 2014, pp 36-47 (also available here). They clearly show that if calcium or magnesium perchlorates are slowly cooled, one can get supercooled brines up to -120 Celcius. This is a rather amazing finding. They call it a glassy state.







share|improve this answer














share|improve this answer



share|improve this answer








edited 14 mins ago

























answered 56 mins ago









M. FarooqM. Farooq

2,380113




2,380113











  • $begingroup$
    "Nobody knew on Earth" (!!) Let's add this to the list of "Reasons to go to Mars" ;-)
    $endgroup$
    – uhoh
    55 mins ago







  • 1




    $begingroup$
    Yes it was a surprising finding because everyone used nitrate selective electrodes without ever realizing that it also responds to perchlorate far more effectively.
    $endgroup$
    – M. Farooq
    53 mins ago
















  • $begingroup$
    "Nobody knew on Earth" (!!) Let's add this to the list of "Reasons to go to Mars" ;-)
    $endgroup$
    – uhoh
    55 mins ago







  • 1




    $begingroup$
    Yes it was a surprising finding because everyone used nitrate selective electrodes without ever realizing that it also responds to perchlorate far more effectively.
    $endgroup$
    – M. Farooq
    53 mins ago















$begingroup$
"Nobody knew on Earth" (!!) Let's add this to the list of "Reasons to go to Mars" ;-)
$endgroup$
– uhoh
55 mins ago





$begingroup$
"Nobody knew on Earth" (!!) Let's add this to the list of "Reasons to go to Mars" ;-)
$endgroup$
– uhoh
55 mins ago





1




1




$begingroup$
Yes it was a surprising finding because everyone used nitrate selective electrodes without ever realizing that it also responds to perchlorate far more effectively.
$endgroup$
– M. Farooq
53 mins ago




$begingroup$
Yes it was a surprising finding because everyone used nitrate selective electrodes without ever realizing that it also responds to perchlorate far more effectively.
$endgroup$
– M. Farooq
53 mins ago











1












$begingroup$


Your Question: Which "exotic salt" can lower water's freezing point by $pu-70 ^circ C$?




Here is your "exotic compound" although it is not a salt by definition. It is a base: Aqua ammonia, also called ammoniacal liquor, ammonia liquor, or ammonia water, is produced by dissolving ammonia gas ($ceNH3$) in water. The proper chemical name of aqua ammonia is ammonium hydroxide ($ceNH4OH$), which is in following equilibrium with water:
$$ceNH3 + H2O <=> NH4+ + OH-$$



Ammonia is very soluble in water: According to Wikipedia, its solubility in water is $47% (w/w)$ at $pu0 ^circ C$, $31% (w/w)$ at $pu25 ^circ C$, and $18% (w/w)$ at $pu50 ^circ C$. Therefore it is ideal to cause large freezing point depression since its solubility increases with decreasing temperature. Now, let's see how are the freezing points of aqua ammonia solutions behave with increasing concentrations. The large scale manufacturer of aqua ammonia, Tanner Industries, listed following values of boiling and freezing points of various solutions in its Customer Manual:
$$
beginarrayccc \hline
% ceNH3 text (by weight) & textApprox. Boiling point & text Approx. Freezing point \hline
23.52 & pu103 ^circ F: (pu39.4 ^circ C) & pu-56 ^circ F: ( pu-48.9 ^circ C)\
25.48 & pu95 ^circ F: (pu35.0 ^circ C) & pu-69 ^circ F : ( pu-56.1 ^circ C)\
27.44 & pu88 ^circ F : (pu31.1 ^circ C) & pu-89 ^circ F: ( pu-67.2 ^circ C)\
29.40 & pu85 ^circ F: (pu29.4 ^circ C) & pu-110 ^circ F : ( pu-78.9 ^circ C)\
31.36 & pu73 ^circ F: (pu22.8 ^circ C) & pu-123 ^circ F : ( pu-86.1 ^circ C)\
33.32 & pu66 ^circ F : (pu18.9 ^circ C) & pu-148 ^circ F: ( pu-100 ^circ C)\hline
endarray
$$



Accordingly, anything between $29-33%$ of aqua ammonia solution would do the job.





share









$endgroup$












  • $begingroup$
    I'll give you +1 for creativity, though I'm not sure if others will. I've really asked for a salt.
    $endgroup$
    – uhoh
    2 mins ago















1












$begingroup$


Your Question: Which "exotic salt" can lower water's freezing point by $pu-70 ^circ C$?




Here is your "exotic compound" although it is not a salt by definition. It is a base: Aqua ammonia, also called ammoniacal liquor, ammonia liquor, or ammonia water, is produced by dissolving ammonia gas ($ceNH3$) in water. The proper chemical name of aqua ammonia is ammonium hydroxide ($ceNH4OH$), which is in following equilibrium with water:
$$ceNH3 + H2O <=> NH4+ + OH-$$



Ammonia is very soluble in water: According to Wikipedia, its solubility in water is $47% (w/w)$ at $pu0 ^circ C$, $31% (w/w)$ at $pu25 ^circ C$, and $18% (w/w)$ at $pu50 ^circ C$. Therefore it is ideal to cause large freezing point depression since its solubility increases with decreasing temperature. Now, let's see how are the freezing points of aqua ammonia solutions behave with increasing concentrations. The large scale manufacturer of aqua ammonia, Tanner Industries, listed following values of boiling and freezing points of various solutions in its Customer Manual:
$$
beginarrayccc \hline
% ceNH3 text (by weight) & textApprox. Boiling point & text Approx. Freezing point \hline
23.52 & pu103 ^circ F: (pu39.4 ^circ C) & pu-56 ^circ F: ( pu-48.9 ^circ C)\
25.48 & pu95 ^circ F: (pu35.0 ^circ C) & pu-69 ^circ F : ( pu-56.1 ^circ C)\
27.44 & pu88 ^circ F : (pu31.1 ^circ C) & pu-89 ^circ F: ( pu-67.2 ^circ C)\
29.40 & pu85 ^circ F: (pu29.4 ^circ C) & pu-110 ^circ F : ( pu-78.9 ^circ C)\
31.36 & pu73 ^circ F: (pu22.8 ^circ C) & pu-123 ^circ F : ( pu-86.1 ^circ C)\
33.32 & pu66 ^circ F : (pu18.9 ^circ C) & pu-148 ^circ F: ( pu-100 ^circ C)\hline
endarray
$$



Accordingly, anything between $29-33%$ of aqua ammonia solution would do the job.





share









$endgroup$












  • $begingroup$
    I'll give you +1 for creativity, though I'm not sure if others will. I've really asked for a salt.
    $endgroup$
    – uhoh
    2 mins ago













1












1








1





$begingroup$


Your Question: Which "exotic salt" can lower water's freezing point by $pu-70 ^circ C$?




Here is your "exotic compound" although it is not a salt by definition. It is a base: Aqua ammonia, also called ammoniacal liquor, ammonia liquor, or ammonia water, is produced by dissolving ammonia gas ($ceNH3$) in water. The proper chemical name of aqua ammonia is ammonium hydroxide ($ceNH4OH$), which is in following equilibrium with water:
$$ceNH3 + H2O <=> NH4+ + OH-$$



Ammonia is very soluble in water: According to Wikipedia, its solubility in water is $47% (w/w)$ at $pu0 ^circ C$, $31% (w/w)$ at $pu25 ^circ C$, and $18% (w/w)$ at $pu50 ^circ C$. Therefore it is ideal to cause large freezing point depression since its solubility increases with decreasing temperature. Now, let's see how are the freezing points of aqua ammonia solutions behave with increasing concentrations. The large scale manufacturer of aqua ammonia, Tanner Industries, listed following values of boiling and freezing points of various solutions in its Customer Manual:
$$
beginarrayccc \hline
% ceNH3 text (by weight) & textApprox. Boiling point & text Approx. Freezing point \hline
23.52 & pu103 ^circ F: (pu39.4 ^circ C) & pu-56 ^circ F: ( pu-48.9 ^circ C)\
25.48 & pu95 ^circ F: (pu35.0 ^circ C) & pu-69 ^circ F : ( pu-56.1 ^circ C)\
27.44 & pu88 ^circ F : (pu31.1 ^circ C) & pu-89 ^circ F: ( pu-67.2 ^circ C)\
29.40 & pu85 ^circ F: (pu29.4 ^circ C) & pu-110 ^circ F : ( pu-78.9 ^circ C)\
31.36 & pu73 ^circ F: (pu22.8 ^circ C) & pu-123 ^circ F : ( pu-86.1 ^circ C)\
33.32 & pu66 ^circ F : (pu18.9 ^circ C) & pu-148 ^circ F: ( pu-100 ^circ C)\hline
endarray
$$



Accordingly, anything between $29-33%$ of aqua ammonia solution would do the job.





share









$endgroup$




Your Question: Which "exotic salt" can lower water's freezing point by $pu-70 ^circ C$?




Here is your "exotic compound" although it is not a salt by definition. It is a base: Aqua ammonia, also called ammoniacal liquor, ammonia liquor, or ammonia water, is produced by dissolving ammonia gas ($ceNH3$) in water. The proper chemical name of aqua ammonia is ammonium hydroxide ($ceNH4OH$), which is in following equilibrium with water:
$$ceNH3 + H2O <=> NH4+ + OH-$$



Ammonia is very soluble in water: According to Wikipedia, its solubility in water is $47% (w/w)$ at $pu0 ^circ C$, $31% (w/w)$ at $pu25 ^circ C$, and $18% (w/w)$ at $pu50 ^circ C$. Therefore it is ideal to cause large freezing point depression since its solubility increases with decreasing temperature. Now, let's see how are the freezing points of aqua ammonia solutions behave with increasing concentrations. The large scale manufacturer of aqua ammonia, Tanner Industries, listed following values of boiling and freezing points of various solutions in its Customer Manual:
$$
beginarrayccc \hline
% ceNH3 text (by weight) & textApprox. Boiling point & text Approx. Freezing point \hline
23.52 & pu103 ^circ F: (pu39.4 ^circ C) & pu-56 ^circ F: ( pu-48.9 ^circ C)\
25.48 & pu95 ^circ F: (pu35.0 ^circ C) & pu-69 ^circ F : ( pu-56.1 ^circ C)\
27.44 & pu88 ^circ F : (pu31.1 ^circ C) & pu-89 ^circ F: ( pu-67.2 ^circ C)\
29.40 & pu85 ^circ F: (pu29.4 ^circ C) & pu-110 ^circ F : ( pu-78.9 ^circ C)\
31.36 & pu73 ^circ F: (pu22.8 ^circ C) & pu-123 ^circ F : ( pu-86.1 ^circ C)\
33.32 & pu66 ^circ F : (pu18.9 ^circ C) & pu-148 ^circ F: ( pu-100 ^circ C)\hline
endarray
$$



Accordingly, anything between $29-33%$ of aqua ammonia solution would do the job.






share











share


share










answered 9 mins ago









Mathew MahindaratneMathew Mahindaratne

6,823927




6,823927











  • $begingroup$
    I'll give you +1 for creativity, though I'm not sure if others will. I've really asked for a salt.
    $endgroup$
    – uhoh
    2 mins ago
















  • $begingroup$
    I'll give you +1 for creativity, though I'm not sure if others will. I've really asked for a salt.
    $endgroup$
    – uhoh
    2 mins ago















$begingroup$
I'll give you +1 for creativity, though I'm not sure if others will. I've really asked for a salt.
$endgroup$
– uhoh
2 mins ago




$begingroup$
I'll give you +1 for creativity, though I'm not sure if others will. I've really asked for a salt.
$endgroup$
– uhoh
2 mins ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Chemistry Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fchemistry.stackexchange.com%2fquestions%2f114837%2fwhich-exotic-salt-can-lower-waters-freezing-point-by-70-c%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Log på Navigationsmenu

Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5