Return the Closest Prime NumberList of primes under a millionThe program that will find the next prime numberWhat is the average of n, the closest prime to n, the square of n and the closest Fibonacci number to n?What is the average of n, the closest prime to n, the square of n and the closest Fibonacci number to n?Finding prime numbers without using “prime characters”That's a prime… almostClosest 7-Distinct-Prime ProductThe Solitude of Prime NumbersClosest Woodall PrimeIs it a weak prime?Find the closest Fibonacci NumberGet thee behind me Satan-Prime!Some Lonely Primes

How easy is it to start Magic from scratch?

Go Pregnant or Go Home

Valid Badminton Score?

Flow chart document symbol

Do the temporary hit points from the Battlerager barbarian's Reckless Abandon stack if I make multiple attacks on my turn?

How do scammers retract money, while you can’t?

Where does the Z80 processor start executing from?

Short story about space worker geeks who zone out by 'listening' to radiation from stars

Escape a backup date in a file name

Is `x >> pure y` equivalent to `liftM (const y) x`

How to be diplomatic in refusing to write code that breaches the privacy of our users

Lay out the Carpet

What can we do to stop prior company from asking us questions?

How did Arya survive the stabbing?

Would a high gravity rocky planet be guaranteed to have an atmosphere?

Is it appropriate to ask a job candidate if we can record their interview?

How do I extract a value from a time formatted value in excel?

Different result between scanning in Epson's "color negative film" mode and scanning in positive -> invert curve in post?

Opposite of a diet

Arithmetic mean geometric mean inequality unclear

I'm in charge of equipment buying but no one's ever happy with what I choose. How to fix this?

Proof of work - lottery approach

Avoiding estate tax by giving multiple gifts

Why escape if the_content isnt?



Return the Closest Prime Number


List of primes under a millionThe program that will find the next prime numberWhat is the average of n, the closest prime to n, the square of n and the closest Fibonacci number to n?What is the average of n, the closest prime to n, the square of n and the closest Fibonacci number to n?Finding prime numbers without using “prime characters”That's a prime… almostClosest 7-Distinct-Prime ProductThe Solitude of Prime NumbersClosest Woodall PrimeIs it a weak prime?Find the closest Fibonacci NumberGet thee behind me Satan-Prime!Some Lonely Primes













19












$begingroup$


Challenge



This is a simple one: Given a positive integer up to 1,000,000, return the closest prime number.



If the number itself is prime, then you should return that number; if there are two primes of equal length away from the provided number, return the lower of the two.



Input is in the form of a single integer, and output should be in the form of an integer as well.



I don't care how you take in the input (function, STDIN, etc.) or display the output (function, STDOUT, etc.), as long as it works.



This is code golf, so standard rules apply—the program with the least bytes wins!



Test Cases



Input => Output
------ -------
80 => 79
100 => 101
5 => 5
9 => 7
532 => 523
1 => 2









share|improve this question











$endgroup$







  • 3




    $begingroup$
    Hi and welcome to PPCG!. To avoid down voting due to lack of quality I suggest you to post it to the sandbox first and after a couple of days post it here
    $endgroup$
    – Luis felipe De jesus Munoz
    14 hours ago










  • $begingroup$
    This is one of the outputs requested in this challenge.
    $endgroup$
    – Arnauld
    14 hours ago










  • $begingroup$
    Very closely related but not quite identical.
    $endgroup$
    – Giuseppe
    14 hours ago










  • $begingroup$
    @Arnauld I saw that one, but I thought that they were different enough to warrant a new question.
    $endgroup$
    – Bobawob
    14 hours ago










  • $begingroup$
    @Giuseppe Yeah, I found out about that one after already posting...
    $endgroup$
    – Bobawob
    14 hours ago















19












$begingroup$


Challenge



This is a simple one: Given a positive integer up to 1,000,000, return the closest prime number.



If the number itself is prime, then you should return that number; if there are two primes of equal length away from the provided number, return the lower of the two.



Input is in the form of a single integer, and output should be in the form of an integer as well.



I don't care how you take in the input (function, STDIN, etc.) or display the output (function, STDOUT, etc.), as long as it works.



This is code golf, so standard rules apply—the program with the least bytes wins!



Test Cases



Input => Output
------ -------
80 => 79
100 => 101
5 => 5
9 => 7
532 => 523
1 => 2









share|improve this question











$endgroup$







  • 3




    $begingroup$
    Hi and welcome to PPCG!. To avoid down voting due to lack of quality I suggest you to post it to the sandbox first and after a couple of days post it here
    $endgroup$
    – Luis felipe De jesus Munoz
    14 hours ago










  • $begingroup$
    This is one of the outputs requested in this challenge.
    $endgroup$
    – Arnauld
    14 hours ago










  • $begingroup$
    Very closely related but not quite identical.
    $endgroup$
    – Giuseppe
    14 hours ago










  • $begingroup$
    @Arnauld I saw that one, but I thought that they were different enough to warrant a new question.
    $endgroup$
    – Bobawob
    14 hours ago










  • $begingroup$
    @Giuseppe Yeah, I found out about that one after already posting...
    $endgroup$
    – Bobawob
    14 hours ago













19












19








19


3



$begingroup$


Challenge



This is a simple one: Given a positive integer up to 1,000,000, return the closest prime number.



If the number itself is prime, then you should return that number; if there are two primes of equal length away from the provided number, return the lower of the two.



Input is in the form of a single integer, and output should be in the form of an integer as well.



I don't care how you take in the input (function, STDIN, etc.) or display the output (function, STDOUT, etc.), as long as it works.



This is code golf, so standard rules apply—the program with the least bytes wins!



Test Cases



Input => Output
------ -------
80 => 79
100 => 101
5 => 5
9 => 7
532 => 523
1 => 2









share|improve this question











$endgroup$




Challenge



This is a simple one: Given a positive integer up to 1,000,000, return the closest prime number.



If the number itself is prime, then you should return that number; if there are two primes of equal length away from the provided number, return the lower of the two.



Input is in the form of a single integer, and output should be in the form of an integer as well.



I don't care how you take in the input (function, STDIN, etc.) or display the output (function, STDOUT, etc.), as long as it works.



This is code golf, so standard rules apply—the program with the least bytes wins!



Test Cases



Input => Output
------ -------
80 => 79
100 => 101
5 => 5
9 => 7
532 => 523
1 => 2






code-golf primes






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 2 hours ago









Cody Gray

2,029416




2,029416










asked 14 hours ago









BobawobBobawob

16611




16611







  • 3




    $begingroup$
    Hi and welcome to PPCG!. To avoid down voting due to lack of quality I suggest you to post it to the sandbox first and after a couple of days post it here
    $endgroup$
    – Luis felipe De jesus Munoz
    14 hours ago










  • $begingroup$
    This is one of the outputs requested in this challenge.
    $endgroup$
    – Arnauld
    14 hours ago










  • $begingroup$
    Very closely related but not quite identical.
    $endgroup$
    – Giuseppe
    14 hours ago










  • $begingroup$
    @Arnauld I saw that one, but I thought that they were different enough to warrant a new question.
    $endgroup$
    – Bobawob
    14 hours ago










  • $begingroup$
    @Giuseppe Yeah, I found out about that one after already posting...
    $endgroup$
    – Bobawob
    14 hours ago












  • 3




    $begingroup$
    Hi and welcome to PPCG!. To avoid down voting due to lack of quality I suggest you to post it to the sandbox first and after a couple of days post it here
    $endgroup$
    – Luis felipe De jesus Munoz
    14 hours ago










  • $begingroup$
    This is one of the outputs requested in this challenge.
    $endgroup$
    – Arnauld
    14 hours ago










  • $begingroup$
    Very closely related but not quite identical.
    $endgroup$
    – Giuseppe
    14 hours ago










  • $begingroup$
    @Arnauld I saw that one, but I thought that they were different enough to warrant a new question.
    $endgroup$
    – Bobawob
    14 hours ago










  • $begingroup$
    @Giuseppe Yeah, I found out about that one after already posting...
    $endgroup$
    – Bobawob
    14 hours ago







3




3




$begingroup$
Hi and welcome to PPCG!. To avoid down voting due to lack of quality I suggest you to post it to the sandbox first and after a couple of days post it here
$endgroup$
– Luis felipe De jesus Munoz
14 hours ago




$begingroup$
Hi and welcome to PPCG!. To avoid down voting due to lack of quality I suggest you to post it to the sandbox first and after a couple of days post it here
$endgroup$
– Luis felipe De jesus Munoz
14 hours ago












$begingroup$
This is one of the outputs requested in this challenge.
$endgroup$
– Arnauld
14 hours ago




$begingroup$
This is one of the outputs requested in this challenge.
$endgroup$
– Arnauld
14 hours ago












$begingroup$
Very closely related but not quite identical.
$endgroup$
– Giuseppe
14 hours ago




$begingroup$
Very closely related but not quite identical.
$endgroup$
– Giuseppe
14 hours ago












$begingroup$
@Arnauld I saw that one, but I thought that they were different enough to warrant a new question.
$endgroup$
– Bobawob
14 hours ago




$begingroup$
@Arnauld I saw that one, but I thought that they were different enough to warrant a new question.
$endgroup$
– Bobawob
14 hours ago












$begingroup$
@Giuseppe Yeah, I found out about that one after already posting...
$endgroup$
– Bobawob
14 hours ago




$begingroup$
@Giuseppe Yeah, I found out about that one after already posting...
$endgroup$
– Bobawob
14 hours ago










22 Answers
22






active

oldest

votes


















6












$begingroup$


05AB1E, 5 bytes



Åps.x


Try it online!
or as a Test Suite



Inefficient for big numbers






share|improve this answer









$endgroup$




















    6












    $begingroup$

    JavaScript (ES6), 53 bytes





    n=>(g=(o,d=N=n+o)=>N%--d?g(o,d):d-1?g(o<0?-o:~o):N)``


    Try it online!



    Commented



    n => ( // n = input
    g = ( // g = recursive function taking:
    o, // o = offset
    d = // d = current divisor, initialized to N
    N = n + o // N = input + offset
    ) => //
    N % --d ? // decrement d; if d is not a divisor of N:
    g(o, d) // do recursive calls until it is
    : // else:
    d - 1 ? // if d is not equal to 1 (either N is composite or N = 1):
    g( // do a recursive call with the next offset:
    o < 0 ? // if o is negative:
    -o // make it positive (e.g. -1 -> +1)
    : // else:
    ~o // use -(o + 1) (e.g. +1 -> -2)
    ) // end of recursive call
    : // else (N is prime):
    N // stop recursion and return N
    )`` // initial call to g with o = [''] (zero-ish)





    share|improve this answer











    $endgroup$




















      5












      $begingroup$


      Octave, 40 bytes





      @(n)p([~,k]=min(abs(n-(p=primes(2*n)))))


      Try it online!



      This uses the fact that there is always a prime between n and 2*n (Bertrand–Chebyshev theorem).



      How it works



      @(n)p([~,k]=min(abs(n-(p=primes(2*n)))))

      @(n) % Define anonymous function with input n
      p=primes(2*n) % Vector of primes up to 2*n. Assign to p
      abs(n-( )) % Absolute difference between n and each prime
      [~,k]=min( ) % Index of first minimum (assign to k; not used)
      p( ) % Apply that index to p





      share|improve this answer











      $endgroup$




















        3












        $begingroup$

        Pyth, 10 bytes



        haDQfP_TSy


        Try it online here, or verify all the test cases at once here.



        haDQfP_TSyQ Implicit: Q=eval(input())
        Trailing Q inferred
        yQ 2 * Q
        S Range from 1 to the above
        f Filter keep the elements of the above, as T, where:
        P_T Is T prime?
        D Order the above by...
        a Q ... absolute difference between each element and Q
        This is a stable sort, so smaller primes will be sorted before larger ones if difference is the same
        h Take the first element of the above, implicit print





        share|improve this answer









        $endgroup$




















          3












          $begingroup$


          Japt, 5 bytes



          _j}cU


          Try it or run all test cases



          _j}cU :Implicit input of integer U
          _ :Function taking an integer as an argument
          j : Test if integer is prime
          } :End function
          cU :Return the first integer in [U,U-1,U+1,U-2,...] that returns true





          share|improve this answer











          $endgroup$




















            3












            $begingroup$


            Gaia, 3 bytes



            ṅD⌡


            Try it online!



            Rather slow for large inputs, but works given enough memory/time.



            I'm not sure why D⌡ implicitly pushes z again, but it makes this a remarkably short answer!



            ṅ	| implicit input z: push first z prime numbers, call it P
            D⌡ | take the absolute difference between P and (implicit) z,
            | returning the smallest value in P with the minimum absolute difference





            share|improve this answer











            $endgroup$




















              2












              $begingroup$


              Wolfram Language (Mathematica), 53 bytes



              If[PrimeQ[s=#],s,#&@@Nearest[s~NextPrime~-1, 1,s]]&


              Try it online!






              share|improve this answer









              $endgroup$




















                2












                $begingroup$


                Python 2, 96 bytes





                l=lambda p:min(filter(lambda p:all(p%n for n in range(2,p)),range(2,p*2)),key=lambda x:abs(x-p))


                Try it online!






                share|improve this answer









                $endgroup$








                • 2




                  $begingroup$
                  This seems to fail for $n=1$.
                  $endgroup$
                  – Arnauld
                  12 hours ago


















                2












                $begingroup$


                VDM-SL, 161 bytes





                f(i)==(lambda p:set of nat1&let z in set p be st forall m in set p&abs(m-i)>=abs(z-i)in z)(x)


                A full program to run might look like this - it's worth noting that the bounds of the set of primes used should probably be changed if you actually want to run this, since it will take a long time to run for 1 million:



                functions
                f:nat1+>nat1
                f(i)==(lambda p:set of nat1&let z in set p be st forall m in set p&abs(m-i)>=abs(z-i)in z)(x)


                Explanation:



                f(i)== /* f is a function which takes a nat1 (natural number not including 0)*/
                (lambda p:set of nat1 /* define a lambda which takes a set of nat1*/
                &let z in set p be st /* which has an element z in the set such that */
                forall m in set p /* for every element in the set*/
                &abs(m-i) /* the difference between the element m and the input*/
                >=abs(z-i) /* is greater than or equal to the difference between the element z and the input */
                in z) /* and return z from the lambda */
                ( /* apply this lambda to... */
                /* all elements x such that.. */
                x in set1,...,9**7 /* x is between 1 and 9^7 */
                &forall y in set2,...,1003 /* and for all values between 2 and 1003*/
                &y<>x=>x mod y<>0 /* y is not x implies x is not divisible by y*/

                )





                share|improve this answer









                $endgroup$




















                  2












                  $begingroup$

                  APL(NARS), 38 chars, 76 bytes



                  ⍵≤1:2⋄0π⍵:⍵⋄d←1π⍵⋄(d-⍵)≥⍵-s←¯1π⍵:s⋄d


                  0π is the test for prime, ¯1π the prev prime, 1π is the next prime; test:



                   f←⍵≤1:2⋄0π⍵:⍵⋄d←1π⍵⋄(d-⍵)≥⍵-s←¯1π⍵:s⋄d
                  f¨80 100 5 9 532 1
                  79 101 5 7 523 2





                  share|improve this answer









                  $endgroup$




















                    2












                    $begingroup$


                    Jelly, 9 7 bytes



                    ḤÆRạÞµḢ


                    Try it online!



                    Slow for larger input, but works ok for the requested range. Thanks to @EriktheOutgolfer for saving 2 bytes!






                    share|improve this answer











                    $endgroup$












                    • $begingroup$
                      Hey, that's clever! Save two by substituting _A¥ with (absolute difference). Oh, and can really be .
                      $endgroup$
                      – Erik the Outgolfer
                      10 hours ago











                    • $begingroup$
                      @EriktheOutgolfer thanks. Surely using won’t always work? It means that only primes up to n+1 will be found, while the closest might be n+2.
                      $endgroup$
                      – Nick Kennedy
                      7 hours ago










                    • $begingroup$
                      Hm, that's a concern.
                      $endgroup$
                      – Erik the Outgolfer
                      7 hours ago



















                    2












                    $begingroup$


                    Tidy, 43 bytes



                    x:(prime↦splice(]x,-1,-∞],[x,∞]))@0


                    Try it online!



                    Explanation



                    This is a lambda with parameter x. This works by creating the following sequence:



                    [x - 1, x, x - 2, x + 1, x - 3, x + 2, x - 4, x + 3, ...]


                    This is splicing together the two sequences ]x, -1, -∞] (left-closed, right-open) and [x, ∞] (both open).



                    For x = 80, this looks like:



                    [79, 80, 78, 81, 77, 82, 76, 83, 75, 84, 74, 85, ...]


                    Then, we use f↦s to select all elements from s satisfying f. In this case, we filter out all composite numbers, leaving only the prime ones. For the same x, this becomes:



                    [79, 83, 73, 71, 89, 67, 97, 61, 59, 101, 103, 53, ...]


                    Then, we use (...)@0 to select the first member of this sequence. Since the lower of the two needs to be selected, the sequence which starts with x - 1 is spliced in first.



                    Note: Only one of x and x - 1 can be prime, so it is okay that the spliced sequence starts with x - 1. Though the sequence could be open on both sides ([x,-1,-∞]), this would needlessly include x twice in the sequence. So, for sake of "efficiency", I chose the left-closed version (also because I like to show off Tidy).






                    share|improve this answer









                    $endgroup$




















                      2












                      $begingroup$


                      Python 2, 71 bytes





                      f=lambda n,k=1,p=1:k<n*3and min(k+n-p%k*2*n,f(n,k+1,p*k*k)-n,key=abs)+n


                      Try it online!



                      A recursive function that uses the Wilson's Theorem prime generator. The product p tracks $(k-1)!^2$, and p%k is 1 for primes and 0 for non-primes. To make it easy to compare abs(k-n) for different primes k, we store k-n and compare via abs, adding back n to get the result k.



                      The expression k+n-p%k*2*n is designed to give k-n on primes (where p%k=1), and otherwise a "bad" value of k+n that's always bigger in absolute value and so doesn't affect the minimum, so that non-primes are passed over.






                      share|improve this answer









                      $endgroup$




















                        1












                        $begingroup$


                        C# (Visual C# Interactive Compiler), 112 bytes





                        g=>Enumerable.Range(2,2<<20).Where(x=>Enumerable.Range(1,x).Count(y=>x%y<1)<3).OrderBy(x=>Math.Abs(x-g)).First()


                        Try it online!



                        Left shifts by 20 in submission but 10 in TIO so that TIO terminates for test cases.






                        share|improve this answer









                        $endgroup$




















                          1












                          $begingroup$


                          APL (Dyalog Extended), 20 bytesSBCS





                          ⊢(⊃>/⍤|⍤-⌽⊢)¯4 4⍭3⌈⊢


                          Try it online!



                           the argument



                          3⌈ max of 3 and that



                          ¯4 4⍭ the previous and next primes`



                          ⊢() apply the following infix tacit function to that, with the original argument as left argument:



                           the primes



                           … cyclically rotate them the following number of steps:



                            - the original argument minus the primes

                             then

                            | absolute value of that

                             then

                            >/ Boolean (0/1) whether the left is greater than the right (i.e. 1 if next is closer)



                           pick the first one (i.e. previous if previous is closer and next if next is closer)






                          share|improve this answer









                          $endgroup$




















                            1












                            $begingroup$

                            Swift, 186 bytes



                            func p(a:Int)let b=q(a:a,b:-1),c=q(a:a,b:1);print(a-b<=c-a ? b:c)
                            func q(a:Int,b:Int)->Intvar k=max(a,2),c=2;while k>c && c != a/2if k%c==0k+=b;c=2elsec=c==2 ? c+1:c+2;return k


                            Try it online!






                            share|improve this answer









                            $endgroup$




















                              1












                              $begingroup$


                              Jelly, 14 bytes



                              ÆpæRÆnạÞƲ2>?2Ḣ


                              Try it online!






                              share|improve this answer









                              $endgroup$




















                                1












                                $begingroup$


                                C# (Visual C# Interactive Compiler), 96 bytes





                                n=>for(int i=0,j;;)if((j=n+i/2*(i++%2*2-1))>1&&Enumerable.Range(2,j-2).All(d=>j%d>0))return j;


                                Try it online!






                                share|improve this answer









                                $endgroup$




















                                  1












                                  $begingroup$


                                  Zsh, 101 92 91 bytes



                                  -9 by collapsing the body into the head of p's loop, -1 from using i=j instead of i=$1 in main loop.





                                  p()for ((n=2;n<$1&&$1%n++;)):
                                  (($1==n))&&<<<$1
                                  j=$1
                                  for ((i=j;;++j&&--i))p $i||p $j&&exit


                                  Try it online!



                                  Try it online!



                                  57 48 bytes to the prime testing function, 43 42 bytes to the main loop (1 byte to the newline between them):



                                  p() # prime function: takes one input, outputs via return code
                                  for (( n = 2; n < $1 && $1 % n++; )) # divisibility check in loop header
                                  : # no-op loop body
                                  (( $1 == n )) && # if we looped up to $1:
                                  <<< $1 # echo out $1. Otherwise, this will return false



                                  For the last condition, we can't use the shorter (($1-n))||, because we need to return false to the main loop if we didn't find a prime. We print in the function to avoid complexity in the main loop.



                                  j=$1 # set i = j = $1. Doing one in and one out is smallest
                                  for (( i = j; ; ++j && --i )) # loop indefinitely, increment and decrement
                                  p $i || p $j && exit # if either $i or $j was a prime, exit


                                  Conditionals are left-associative, which we take advantage of here. We do test the starting number twice to make the decrement logic simpler.






                                  share|improve this answer










                                  New contributor




                                  GammaFunction is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                  Check out our Code of Conduct.






                                  $endgroup$




















                                    1












                                    $begingroup$

                                    C, 122 bytes



                                    #define r return
                                    p(a,i)if(a<2)r 0;i=1;while(++i<a)if(a%i<1)r 0;r 1;c(a,b)b=a;while(1)if(p(b))r b;if(p(--a))r a;b++;


                                    Use it calling function c() and passing as argument the number, it should return the closest prime.






                                    share|improve this answer









                                    $endgroup$












                                    • $begingroup$
                                      But c() receives two parameters... Also, you can probably shorten the while(1) to for(;;) (untested, since I don't get how to run your code
                                      $endgroup$
                                      – Embodiment of Ignorance
                                      44 mins ago


















                                    1












                                    $begingroup$

                                    Python 2, 93 bytes





                                    lambda n:sorted(range(1,3*n),key=lambda x:abs(x-n)if all(x%k for k in range(2,x))else 2*n)[0]





                                    share|improve this answer











                                    $endgroup$








                                    • 1




                                      $begingroup$
                                      You don't need the f= in the start
                                      $endgroup$
                                      – Embodiment of Ignorance
                                      9 hours ago










                                    • $begingroup$
                                      @EmbodimentofIgnorance Thanks, fixed that along with the range and non-prime penalty criteria that was causing n=1 to fail
                                      $endgroup$
                                      – deustice
                                      8 hours ago






                                    • 1




                                      $begingroup$
                                      The primality check doesn't work for Fermat pseudoprimes such as 341=31*11 which it calls prime.
                                      $endgroup$
                                      – xnor
                                      8 hours ago










                                    • $begingroup$
                                      @xnor Fixed, thanks
                                      $endgroup$
                                      – deustice
                                      7 hours ago


















                                    1












                                    $begingroup$


                                    J, 19 15 bytes



                                    (0improve this answer











                                    $endgroup$



                                    JavaScript (ES6), 53 bytes





                                    n=>(g=(o,d=N=n+o)=>N%--d?g(o,d):d-1?g(o<0?-o:~o):N)``


                                    Try it online!



                                    Commented



                                    n => ( // n = input
                                    g = ( // g = recursive function taking:
                                    o, // o = offset
                                    d = // d = current divisor, initialized to N
                                    N = n + o // N = input + offset
                                    ) => //
                                    N % --d ? // decrement d; if d is not a divisor of N:
                                    g(o, d) // do recursive calls until it is
                                    : // else:
                                    d - 1 ? // if d is not equal to 1 (either N is composite or N = 1):
                                    g( // do a recursive call with the next offset:
                                    o < 0 ? // if o is negative:
                                    -o // make it positive (e.g. -1 -> +1)
                                    : // else:
                                    ~o // use -(o + 1) (e.g. +1 -> -2)
                                    ) // end of recursive call
                                    : // else (N is prime):
                                    N // stop recursion and return N
                                    )`` // initial call to g with o = [''] (zero-ish)






                                    sharecU


                                    Try it or run all test cases



                                    _j}cU :Implicit input of integer U
                                    _ :Function taking an integer as an argument
                                    j : Test if integer is prime
                                    } :End function
                                    cU :Return the first integer in [U,U-1,U+1,U-2,...] that returns true





                                    share|improve this answer











                                    $endgroup$

















                                      3












                                      $begingroup$


                                      Japt, 5 bytes



                                      _j}cU


                                      Try it or run all test cases



                                      _j}cU :Implicit input of integer U
                                      _ :Function taking an integer as an argument
                                      j : Test if integer is prime
                                      } :End function
                                      cU :Return the first integer in [U,U-1,U+1,U-2,...] that returns true





                                      share|improve this answer











                                      $endgroup$















                                        3












                                        3








                                        3





                                        $begingroup$


                                        Japt, 5 bytes



                                        _j}cU


                                        Try it or run all test cases



                                        _j}cU :Implicit input of integer U
                                        _ :Function taking an integer as an argument
                                        j : Test if integer is prime
                                        } :End function
                                        cU :Return the first integer in [U,U-1,U+1,U-2,...] that returns true





                                        share|improve this answer











                                        $endgroup$




                                        Japt, 5 bytes



                                        _j}cU


                                        Try it or run all test cases



                                        _j}cU :Implicit input of integer U
                                        _ :Function taking an integer as an argument
                                        j : Test if integer is prime
                                        } :End function
                                        cU :Return the first integer in [U,U-1,U+1,U-2,...] that returns true






                                        share|improve this answer














                                        share|improve this answer



                                        share|improve this answer








                                        edited 13 hours ago

























                                        answered 14 hours ago









                                        ShaggyShaggy

                                        19k21667




                                        19k21667





















                                            3












                                            $begingroup$


                                            Gaia, 3 bytes



                                            ṅD⌡


                                            Try it online!



                                            Rather slow for large inputs, but works given enough memory/time.



                                            I'm not sure why D⌡ implicitly pushes z again, but it makes this a remarkably short answer!



                                            ṅ	| implicit input z: push first z prime numbers, call it P
                                            D⌡ | take the absolute difference between P and (implicit) z,
                                            | returning the smallest value in P with the minimum absolute difference





                                            share|improve this answer











                                            $endgroup$

















                                              3












                                              $begingroup$


                                              Gaia, 3 bytes



                                              ṅD⌡


                                              Try it online!



                                              Rather slow for large inputs, but works given enough memory/time.



                                              I'm not sure why D⌡ implicitly pushes z again, but it makes this a remarkably short answer!



                                              ṅ	| implicit input z: push first z prime numbers, call it P
                                              D⌡ | take the absolute difference between P and (implicit) z,
                                              | returning the smallest value in P with the minimum absolute difference





                                              share|improve this answer











                                              $endgroup$















                                                3












                                                3








                                                3





                                                $begingroup$


                                                Gaia, 3 bytes



                                                ṅD⌡


                                                Try it online!



                                                Rather slow for large inputs, but works given enough memory/time.



                                                I'm not sure why D⌡ implicitly pushes z again, but it makes this a remarkably short answer!



                                                ṅ	| implicit input z: push first z prime numbers, call it P
                                                D⌡ | take the absolute difference between P and (implicit) z,
                                                | returning the smallest value in P with the minimum absolute difference





                                                share|improve this answer











                                                $endgroup$




                                                Gaia, 3 bytes



                                                ṅD⌡


                                                Try it online!



                                                Rather slow for large inputs, but works given enough memory/time.



                                                I'm not sure why D⌡ implicitly pushes z again, but it makes this a remarkably short answer!



                                                ṅ	| implicit input z: push first z prime numbers, call it P
                                                D⌡ | take the absolute difference between P and (implicit) z,
                                                | returning the smallest value in P with the minimum absolute difference






                                                share|improve this answer














                                                share|improve this answer



                                                share|improve this answer








                                                edited 9 hours ago

























                                                answered 9 hours ago









                                                GiuseppeGiuseppe

                                                17.2k31152




                                                17.2k31152





















                                                    2












                                                    $begingroup$


                                                    Wolfram Language (Mathematica), 53 bytes



                                                    If[PrimeQ[s=#],s,#&@@Nearest[s~NextPrime~-1, 1,s]]&


                                                    Try it online!






                                                    share|improve this answer









                                                    $endgroup$

















                                                      2












                                                      $begingroup$


                                                      Wolfram Language (Mathematica), 53 bytes



                                                      If[PrimeQ[s=#],s,#&@@Nearest[s~NextPrime~-1, 1,s]]&


                                                      Try it online!






                                                      share|improve this answer









                                                      $endgroup$















                                                        2












                                                        2








                                                        2





                                                        $begingroup$


                                                        Wolfram Language (Mathematica), 53 bytes



                                                        If[PrimeQ[s=#],s,#&@@Nearest[s~NextPrime~-1, 1,s]]&


                                                        Try it online!






                                                        share|improve this answer









                                                        $endgroup$




                                                        Wolfram Language (Mathematica), 53 bytes



                                                        If[PrimeQ[s=#],s,#&@@Nearest[s~NextPrime~-1, 1,s]]&


                                                        Try it online!







                                                        share|improve this answer












                                                        share|improve this answer



                                                        share|improve this answer










                                                        answered 14 hours ago









                                                        J42161217J42161217

                                                        13.6k21252




                                                        13.6k21252





















                                                            2












                                                            $begingroup$


                                                            Python 2, 96 bytes





                                                            l=lambda p:min(filter(lambda p:all(p%n for n in range(2,p)),range(2,p*2)),key=lambda x:abs(x-p))


                                                            Try it online!






                                                            share|improve this answer









                                                            $endgroup$








                                                            • 2




                                                              $begingroup$
                                                              This seems to fail for $n=1$.
                                                              $endgroup$
                                                              – Arnauld
                                                              12 hours ago















                                                            2












                                                            $begingroup$


                                                            Python 2, 96 bytes





                                                            l=lambda p:min(filter(lambda p:all(p%n for n in range(2,p)),range(2,p*2)),key=lambda x:abs(x-p))


                                                            Try it online!






                                                            share|improve this answer









                                                            $endgroup$








                                                            • 2




                                                              $begingroup$
                                                              This seems to fail for $n=1$.
                                                              $endgroup$
                                                              – Arnauld
                                                              12 hours ago













                                                            2












                                                            2








                                                            2





                                                            $begingroup$


                                                            Python 2, 96 bytes





                                                            l=lambda p:min(filter(lambda p:all(p%n for n in range(2,p)),range(2,p*2)),key=lambda x:abs(x-p))


                                                            Try it online!






                                                            share|improve this answer









                                                            $endgroup$




                                                            Python 2, 96 bytes





                                                            l=lambda p:min(filter(lambda p:all(p%n for n in range(2,p)),range(2,p*2)),key=lambda x:abs(x-p))


                                                            Try it online!







                                                            share|improve this answer












                                                            share|improve this answer



                                                            share|improve this answer










                                                            answered 13 hours ago









                                                            Snaddyvitch DispenserSnaddyvitch Dispenser

                                                            1015




                                                            1015







                                                            • 2




                                                              $begingroup$
                                                              This seems to fail for $n=1$.
                                                              $endgroup$
                                                              – Arnauld
                                                              12 hours ago












                                                            • 2




                                                              $begingroup$
                                                              This seems to fail for $n=1$.
                                                              $endgroup$
                                                              – Arnauld
                                                              12 hours ago







                                                            2




                                                            2




                                                            $begingroup$
                                                            This seems to fail for $n=1$.
                                                            $endgroup$
                                                            – Arnauld
                                                            12 hours ago




                                                            $begingroup$
                                                            This seems to fail for $n=1$.
                                                            $endgroup$
                                                            – Arnauld
                                                            12 hours ago











                                                            2












                                                            $begingroup$


                                                            VDM-SL, 161 bytes





                                                            f(i)==(lambda p:set of nat1&let z in set p be st forall m in set p&abs(m-i)>=abs(z-i)in z)(x)


                                                            A full program to run might look like this - it's worth noting that the bounds of the set of primes used should probably be changed if you actually want to run this, since it will take a long time to run for 1 million:



                                                            functions
                                                            f:nat1+>nat1
                                                            f(i)==(lambda p:set of nat1&let z in set p be st forall m in set p&abs(m-i)>=abs(z-i)in z)(x)


                                                            Explanation:



                                                            f(i)== /* f is a function which takes a nat1 (natural number not including 0)*/
                                                            (lambda p:set of nat1 /* define a lambda which takes a set of nat1*/
                                                            &let z in set p be st /* which has an element z in the set such that */
                                                            forall m in set p /* for every element in the set*/
                                                            &abs(m-i) /* the difference between the element m and the input*/
                                                            >=abs(z-i) /* is greater than or equal to the difference between the element z and the input */
                                                            in z) /* and return z from the lambda */
                                                            ( /* apply this lambda to... */
                                                            /* all elements x such that.. */
                                                            x in set1,...,9**7 /* x is between 1 and 9^7 */
                                                            &forall y in set2,...,1003 /* and for all values between 2 and 1003*/
                                                            &y<>x=>x mod y<>0 /* y is not x implies x is not divisible by y*/

                                                            )





                                                            share|improve this answer









                                                            $endgroup$

















                                                              2












                                                              $begingroup$


                                                              VDM-SL, 161 bytes





                                                              f(i)==(lambda p:set of nat1&let z in set p be st forall m in set p&abs(m-i)>=abs(z-i)in z)(x)


                                                              A full program to run might look like this - it's worth noting that the bounds of the set of primes used should probably be changed if you actually want to run this, since it will take a long time to run for 1 million:



                                                              functions
                                                              f:nat1+>nat1
                                                              f(i)==(lambda p:set of nat1&let z in set p be st forall m in set p&abs(m-i)>=abs(z-i)in z)(x)


                                                              Explanation:



                                                              f(i)== /* f is a function which takes a nat1 (natural number not including 0)*/
                                                              (lambda p:set of nat1 /* define a lambda which takes a set of nat1*/
                                                              &let z in set p be st /* which has an element z in the set such that */
                                                              forall m in set p /* for every element in the set*/
                                                              &abs(m-i) /* the difference between the element m and the input*/
                                                              >=abs(z-i) /* is greater than or equal to the difference between the element z and the input */
                                                              in z) /* and return z from the lambda */
                                                              ( /* apply this lambda to... */
                                                              /* all elements x such that.. */
                                                              x in set1,...,9**7 /* x is between 1 and 9^7 */
                                                              &forall y in set2,...,1003 /* and for all values between 2 and 1003*/
                                                              &y<>x=>x mod y<>0 /* y is not x implies x is not divisible by y*/

                                                              )





                                                              share|improve this answer









                                                              $endgroup$















                                                                2












                                                                2








                                                                2





                                                                $begingroup$


                                                                VDM-SL, 161 bytes





                                                                f(i)==(lambda p:set of nat1&let z in set p be st forall m in set p&abs(m-i)>=abs(z-i)in z)(x)


                                                                A full program to run might look like this - it's worth noting that the bounds of the set of primes used should probably be changed if you actually want to run this, since it will take a long time to run for 1 million:



                                                                functions
                                                                f:nat1+>nat1
                                                                f(i)==(lambda p:set of nat1&let z in set p be st forall m in set p&abs(m-i)>=abs(z-i)in z)(x)


                                                                Explanation:



                                                                f(i)== /* f is a function which takes a nat1 (natural number not including 0)*/
                                                                (lambda p:set of nat1 /* define a lambda which takes a set of nat1*/
                                                                &let z in set p be st /* which has an element z in the set such that */
                                                                forall m in set p /* for every element in the set*/
                                                                &abs(m-i) /* the difference between the element m and the input*/
                                                                >=abs(z-i) /* is greater than or equal to the difference between the element z and the input */
                                                                in z) /* and return z from the lambda */
                                                                ( /* apply this lambda to... */
                                                                /* all elements x such that.. */
                                                                x in set1,...,9**7 /* x is between 1 and 9^7 */
                                                                &forall y in set2,...,1003 /* and for all values between 2 and 1003*/
                                                                &y<>x=>x mod y<>0 /* y is not x implies x is not divisible by y*/

                                                                )





                                                                share|improve this answer









                                                                $endgroup$




                                                                VDM-SL, 161 bytes





                                                                f(i)==(lambda p:set of nat1&let z in set p be st forall m in set p&abs(m-i)>=abs(z-i)in z)(x)


                                                                A full program to run might look like this - it's worth noting that the bounds of the set of primes used should probably be changed if you actually want to run this, since it will take a long time to run for 1 million:



                                                                functions
                                                                f:nat1+>nat1
                                                                f(i)==(lambda p:set of nat1&let z in set p be st forall m in set p&abs(m-i)>=abs(z-i)in z)(x)


                                                                Explanation:



                                                                f(i)== /* f is a function which takes a nat1 (natural number not including 0)*/
                                                                (lambda p:set of nat1 /* define a lambda which takes a set of nat1*/
                                                                &let z in set p be st /* which has an element z in the set such that */
                                                                forall m in set p /* for every element in the set*/
                                                                &abs(m-i) /* the difference between the element m and the input*/
                                                                >=abs(z-i) /* is greater than or equal to the difference between the element z and the input */
                                                                in z) /* and return z from the lambda */
                                                                ( /* apply this lambda to... */
                                                                /* all elements x such that.. */
                                                                x in set1,...,9**7 /* x is between 1 and 9^7 */
                                                                &forall y in set2,...,1003 /* and for all values between 2 and 1003*/
                                                                &y<>x=>x mod y<>0 /* y is not x implies x is not divisible by y*/

                                                                )






                                                                share|improve this answer












                                                                share|improve this answer



                                                                share|improve this answer










                                                                answered 13 hours ago









                                                                Expired DataExpired Data

                                                                3686




                                                                3686





















                                                                    2












                                                                    $begingroup$

                                                                    APL(NARS), 38 chars, 76 bytes



                                                                    ⍵≤1:2⋄0π⍵:⍵⋄d←1π⍵⋄(d-⍵)≥⍵-s←¯1π⍵:s⋄d


                                                                    0π is the test for prime, ¯1π the prev prime, 1π is the next prime; test:



                                                                     f←⍵≤1:2⋄0π⍵:⍵⋄d←1π⍵⋄(d-⍵)≥⍵-s←¯1π⍵:s⋄d
                                                                    f¨80 100 5 9 532 1
                                                                    79 101 5 7 523 2





                                                                    share|improve this answer









                                                                    $endgroup$

















                                                                      2












                                                                      $begingroup$

                                                                      APL(NARS), 38 chars, 76 bytes



                                                                      ⍵≤1:2⋄0π⍵:⍵⋄d←1π⍵⋄(d-⍵)≥⍵-s←¯1π⍵:s⋄d


                                                                      0π is the test for prime, ¯1π the prev prime, 1π is the next prime; test:



                                                                       f←⍵≤1:2⋄0π⍵:⍵⋄d←1π⍵⋄(d-⍵)≥⍵-s←¯1π⍵:s⋄d
                                                                      f¨80 100 5 9 532 1
                                                                      79 101 5 7 523 2





                                                                      share|improve this answer









                                                                      $endgroup$















                                                                        2












                                                                        2








                                                                        2





                                                                        $begingroup$

                                                                        APL(NARS), 38 chars, 76 bytes



                                                                        ⍵≤1:2⋄0π⍵:⍵⋄d←1π⍵⋄(d-⍵)≥⍵-s←¯1π⍵:s⋄d


                                                                        0π is the test for prime, ¯1π the prev prime, 1π is the next prime; test:



                                                                         f←⍵≤1:2⋄0π⍵:⍵⋄d←1π⍵⋄(d-⍵)≥⍵-s←¯1π⍵:s⋄d
                                                                        f¨80 100 5 9 532 1
                                                                        79 101 5 7 523 2





                                                                        share|improve this answer









                                                                        $endgroup$



                                                                        APL(NARS), 38 chars, 76 bytes



                                                                        ⍵≤1:2⋄0π⍵:⍵⋄d←1π⍵⋄(d-⍵)≥⍵-s←¯1π⍵:s⋄d


                                                                        0π is the test for prime, ¯1π the prev prime, 1π is the next prime; test:



                                                                         f←⍵≤1:2⋄0π⍵:⍵⋄d←1π⍵⋄(d-⍵)≥⍵-s←¯1π⍵:s⋄d
                                                                        f¨80 100 5 9 532 1
                                                                        79 101 5 7 523 2






                                                                        share|improve this answer












                                                                        share|improve this answer



                                                                        share|improve this answer










                                                                        answered 11 hours ago









                                                                        RosLuPRosLuP

                                                                        2,296514




                                                                        2,296514





















                                                                            2












                                                                            $begingroup$


                                                                            Jelly, 9 7 bytes



                                                                            ḤÆRạÞµḢ


                                                                            Try it online!



                                                                            Slow for larger input, but works ok for the requested range. Thanks to @EriktheOutgolfer for saving 2 bytes!






                                                                            share|improve this answer











                                                                            $endgroup$












                                                                            • $begingroup$
                                                                              Hey, that's clever! Save two by substituting _A¥ with (absolute difference). Oh, and can really be .
                                                                              $endgroup$
                                                                              – Erik the Outgolfer
                                                                              10 hours ago











                                                                            • $begingroup$
                                                                              @EriktheOutgolfer thanks. Surely using won’t always work? It means that only primes up to n+1 will be found, while the closest might be n+2.
                                                                              $endgroup$
                                                                              – Nick Kennedy
                                                                              7 hours ago










                                                                            • $begingroup$
                                                                              Hm, that's a concern.
                                                                              $endgroup$
                                                                              – Erik the Outgolfer
                                                                              7 hours ago
















                                                                            2












                                                                            $begingroup$


                                                                            Jelly, 9 7 bytes



                                                                            ḤÆRạÞµḢ


                                                                            Try it online!



                                                                            Slow for larger input, but works ok for the requested range. Thanks to @EriktheOutgolfer for saving 2 bytes!






                                                                            share|improve this answer











                                                                            $endgroup$












                                                                            • $begingroup$
                                                                              Hey, that's clever! Save two by substituting _A¥ with (absolute difference). Oh, and can really be .
                                                                              $endgroup$
                                                                              – Erik the Outgolfer
                                                                              10 hours ago











                                                                            • $begingroup$
                                                                              @EriktheOutgolfer thanks. Surely using won’t always work? It means that only primes up to n+1 will be found, while the closest might be n+2.
                                                                              $endgroup$
                                                                              – Nick Kennedy
                                                                              7 hours ago










                                                                            • $begingroup$
                                                                              Hm, that's a concern.
                                                                              $endgroup$
                                                                              – Erik the Outgolfer
                                                                              7 hours ago














                                                                            2












                                                                            2








                                                                            2





                                                                            $begingroup$


                                                                            Jelly, 9 7 bytes



                                                                            ḤÆRạÞµḢ


                                                                            Try it online!



                                                                            Slow for larger input, but works ok for the requested range. Thanks to @EriktheOutgolfer for saving 2 bytes!






                                                                            share|improve this answer











                                                                            $endgroup$




                                                                            Jelly, 9 7 bytes



                                                                            ḤÆRạÞµḢ


                                                                            Try it online!



                                                                            Slow for larger input, but works ok for the requested range. Thanks to @EriktheOutgolfer for saving 2 bytes!







                                                                            share|improve this answer














                                                                            share|improve this answer



                                                                            share|improve this answer








                                                                            edited 10 hours ago

























                                                                            answered 10 hours ago









                                                                            Nick KennedyNick Kennedy

                                                                            1,04648




                                                                            1,04648











                                                                            • $begingroup$
                                                                              Hey, that's clever! Save two by substituting _A¥ with (absolute difference). Oh, and can really be .
                                                                              $endgroup$
                                                                              – Erik the Outgolfer
                                                                              10 hours ago











                                                                            • $begingroup$
                                                                              @EriktheOutgolfer thanks. Surely using won’t always work? It means that only primes up to n+1 will be found, while the closest might be n+2.
                                                                              $endgroup$
                                                                              – Nick Kennedy
                                                                              7 hours ago










                                                                            • $begingroup$
                                                                              Hm, that's a concern.
                                                                              $endgroup$
                                                                              – Erik the Outgolfer
                                                                              7 hours ago

















                                                                            • $begingroup$
                                                                              Hey, that's clever! Save two by substituting _A¥ with (absolute difference). Oh, and can really be .
                                                                              $endgroup$
                                                                              – Erik the Outgolfer
                                                                              10 hours ago











                                                                            • $begingroup$
                                                                              @EriktheOutgolfer thanks. Surely using won’t always work? It means that only primes up to n+1 will be found, while the closest might be n+2.
                                                                              $endgroup$
                                                                              – Nick Kennedy
                                                                              7 hours ago










                                                                            • $begingroup$
                                                                              Hm, that's a concern.
                                                                              $endgroup$
                                                                              – Erik the Outgolfer
                                                                              7 hours ago
















                                                                            $begingroup$
                                                                            Hey, that's clever! Save two by substituting _A¥ with (absolute difference). Oh, and can really be .
                                                                            $endgroup$
                                                                            – Erik the Outgolfer
                                                                            10 hours ago





                                                                            $begingroup$
                                                                            Hey, that's clever! Save two by substituting _A¥ with (absolute difference). Oh, and can really be .
                                                                            $endgroup$
                                                                            – Erik the Outgolfer
                                                                            10 hours ago













                                                                            $begingroup$
                                                                            @EriktheOutgolfer thanks. Surely using won’t always work? It means that only primes up to n+1 will be found, while the closest might be n+2.
                                                                            $endgroup$
                                                                            – Nick Kennedy
                                                                            7 hours ago




                                                                            $begingroup$
                                                                            @EriktheOutgolfer thanks. Surely using won’t always work? It means that only primes up to n+1 will be found, while the closest might be n+2.
                                                                            $endgroup$
                                                                            – Nick Kennedy
                                                                            7 hours ago












                                                                            $begingroup$
                                                                            Hm, that's a concern.
                                                                            $endgroup$
                                                                            – Erik the Outgolfer
                                                                            7 hours ago





                                                                            $begingroup$
                                                                            Hm, that's a concern.
                                                                            $endgroup$
                                                                            – Erik the Outgolfer
                                                                            7 hours ago












                                                                            2












                                                                            $begingroup$


                                                                            Tidy, 43 bytes



                                                                            x:(prime↦splice(]x,-1,-∞],[x,∞]))@0


                                                                            Try it online!



                                                                            Explanation



                                                                            This is a lambda with parameter x. This works by creating the following sequence:



                                                                            [x - 1, x, x - 2, x + 1, x - 3, x + 2, x - 4, x + 3, ...]


                                                                            This is splicing together the two sequences ]x, -1, -∞] (left-closed, right-open) and [x, ∞] (both open).



                                                                            For x = 80, this looks like:



                                                                            [79, 80, 78, 81, 77, 82, 76, 83, 75, 84, 74, 85, ...]


                                                                            Then, we use f↦s to select all elements from s satisfying f. In this case, we filter out all composite numbers, leaving only the prime ones. For the same x, this becomes:



                                                                            [79, 83, 73, 71, 89, 67, 97, 61, 59, 101, 103, 53, ...]


                                                                            Then, we use (...)@0 to select the first member of this sequence. Since the lower of the two needs to be selected, the sequence which starts with x - 1 is spliced in first.



                                                                            Note: Only one of x and x - 1 can be prime, so it is okay that the spliced sequence starts with x - 1. Though the sequence could be open on both sides ([x,-1,-∞]), this would needlessly include x twice in the sequence. So, for sake of "efficiency", I chose the left-closed version (also because I like to show off Tidy).






                                                                            share|improve this answer









                                                                            $endgroup$

















                                                                              2












                                                                              $begingroup$


                                                                              Tidy, 43 bytes



                                                                              x:(prime↦splice(]x,-1,-∞],[x,∞]))@0


                                                                              Try it online!



                                                                              Explanation



                                                                              This is a lambda with parameter x. This works by creating the following sequence:



                                                                              [x - 1, x, x - 2, x + 1, x - 3, x + 2, x - 4, x + 3, ...]


                                                                              This is splicing together the two sequences ]x, -1, -∞] (left-closed, right-open) and [x, ∞] (both open).



                                                                              For x = 80, this looks like:



                                                                              [79, 80, 78, 81, 77, 82, 76, 83, 75, 84, 74, 85, ...]


                                                                              Then, we use f↦s to select all elements from s satisfying f. In this case, we filter out all composite numbers, leaving only the prime ones. For the same x, this becomes:



                                                                              [79, 83, 73, 71, 89, 67, 97, 61, 59, 101, 103, 53, ...]


                                                                              Then, we use (...)@0 to select the first member of this sequence. Since the lower of the two needs to be selected, the sequence which starts with x - 1 is spliced in first.



                                                                              Note: Only one of x and x - 1 can be prime, so it is okay that the spliced sequence starts with x - 1. Though the sequence could be open on both sides ([x,-1,-∞]), this would needlessly include x twice in the sequence. So, for sake of "efficiency", I chose the left-closed version (also because I like to show off Tidy).






                                                                              share|improve this answer









                                                                              $endgroup$















                                                                                2












                                                                                2








                                                                                2





                                                                                $begingroup$


                                                                                Tidy, 43 bytes



                                                                                x:(prime↦splice(]x,-1,-∞],[x,∞]))@0


                                                                                Try it online!



                                                                                Explanation



                                                                                This is a lambda with parameter x. This works by creating the following sequence:



                                                                                [x - 1, x, x - 2, x + 1, x - 3, x + 2, x - 4, x + 3, ...]


                                                                                This is splicing together the two sequences ]x, -1, -∞] (left-closed, right-open) and [x, ∞] (both open).



                                                                                For x = 80, this looks like:



                                                                                [79, 80, 78, 81, 77, 82, 76, 83, 75, 84, 74, 85, ...]


                                                                                Then, we use f↦s to select all elements from s satisfying f. In this case, we filter out all composite numbers, leaving only the prime ones. For the same x, this becomes:



                                                                                [79, 83, 73, 71, 89, 67, 97, 61, 59, 101, 103, 53, ...]


                                                                                Then, we use (...)@0 to select the first member of this sequence. Since the lower of the two needs to be selected, the sequence which starts with x - 1 is spliced in first.



                                                                                Note: Only one of x and x - 1 can be prime, so it is okay that the spliced sequence starts with x - 1. Though the sequence could be open on both sides ([x,-1,-∞]), this would needlessly include x twice in the sequence. So, for sake of "efficiency", I chose the left-closed version (also because I like to show off Tidy).






                                                                                share|improve this answer









                                                                                $endgroup$




                                                                                Tidy, 43 bytes



                                                                                x:(prime↦splice(]x,-1,-∞],[x,∞]))@0


                                                                                Try it online!



                                                                                Explanation



                                                                                This is a lambda with parameter x. This works by creating the following sequence:



                                                                                [x - 1, x, x - 2, x + 1, x - 3, x + 2, x - 4, x + 3, ...]


                                                                                This is splicing together the two sequences ]x, -1, -∞] (left-closed, right-open) and [x, ∞] (both open).



                                                                                For x = 80, this looks like:



                                                                                [79, 80, 78, 81, 77, 82, 76, 83, 75, 84, 74, 85, ...]


                                                                                Then, we use f↦s to select all elements from s satisfying f. In this case, we filter out all composite numbers, leaving only the prime ones. For the same x, this becomes:



                                                                                [79, 83, 73, 71, 89, 67, 97, 61, 59, 101, 103, 53, ...]


                                                                                Then, we use (...)@0 to select the first member of this sequence. Since the lower of the two needs to be selected, the sequence which starts with x - 1 is spliced in first.



                                                                                Note: Only one of x and x - 1 can be prime, so it is okay that the spliced sequence starts with x - 1. Though the sequence could be open on both sides ([x,-1,-∞]), this would needlessly include x twice in the sequence. So, for sake of "efficiency", I chose the left-closed version (also because I like to show off Tidy).







                                                                                share|improve this answer












                                                                                share|improve this answer



                                                                                share|improve this answer










                                                                                answered 8 hours ago









                                                                                Conor O'BrienConor O'Brien

                                                                                30.5k264162




                                                                                30.5k264162





















                                                                                    2












                                                                                    $begingroup$


                                                                                    Python 2, 71 bytes





                                                                                    f=lambda n,k=1,p=1:k<n*3and min(k+n-p%k*2*n,f(n,k+1,p*k*k)-n,key=abs)+n


                                                                                    Try it online!



                                                                                    A recursive function that uses the Wilson's Theorem prime generator. The product p tracks $(k-1)!^2$, and p%k is 1 for primes and 0 for non-primes. To make it easy to compare abs(k-n) for different primes k, we store k-n and compare via abs, adding back n to get the result k.



                                                                                    The expression k+n-p%k*2*n is designed to give k-n on primes (where p%k=1), and otherwise a "bad" value of k+n that's always bigger in absolute value and so doesn't affect the minimum, so that non-primes are passed over.






                                                                                    share|improve this answer









                                                                                    $endgroup$

















                                                                                      2












                                                                                      $begingroup$


                                                                                      Python 2, 71 bytes





                                                                                      f=lambda n,k=1,p=1:k<n*3and min(k+n-p%k*2*n,f(n,k+1,p*k*k)-n,key=abs)+n


                                                                                      Try it online!



                                                                                      A recursive function that uses the Wilson's Theorem prime generator. The product p tracks $(k-1)!^2$, and p%k is 1 for primes and 0 for non-primes. To make it easy to compare abs(k-n) for different primes k, we store k-n and compare via abs, adding back n to get the result k.



                                                                                      The expression k+n-p%k*2*n is designed to give k-n on primes (where p%k=1), and otherwise a "bad" value of k+n that's always bigger in absolute value and so doesn't affect the minimum, so that non-primes are passed over.






                                                                                      share|improve this answer









                                                                                      $endgroup$















                                                                                        2












                                                                                        2








                                                                                        2





                                                                                        $begingroup$


                                                                                        Python 2, 71 bytes





                                                                                        f=lambda n,k=1,p=1:k<n*3and min(k+n-p%k*2*n,f(n,k+1,p*k*k)-n,key=abs)+n


                                                                                        Try it online!



                                                                                        A recursive function that uses the Wilson's Theorem prime generator. The product p tracks $(k-1)!^2$, and p%k is 1 for primes and 0 for non-primes. To make it easy to compare abs(k-n) for different primes k, we store k-n and compare via abs, adding back n to get the result k.



                                                                                        The expression k+n-p%k*2*n is designed to give k-n on primes (where p%k=1), and otherwise a "bad" value of k+n that's always bigger in absolute value and so doesn't affect the minimum, so that non-primes are passed over.






                                                                                        share|improve this answer









                                                                                        $endgroup$




                                                                                        Python 2, 71 bytes





                                                                                        f=lambda n,k=1,p=1:k<n*3and min(k+n-p%k*2*n,f(n,k+1,p*k*k)-n,key=abs)+n


                                                                                        Try it online!



                                                                                        A recursive function that uses the Wilson's Theorem prime generator. The product p tracks $(k-1)!^2$, and p%k is 1 for primes and 0 for non-primes. To make it easy to compare abs(k-n) for different primes k, we store k-n and compare via abs, adding back n to get the result k.



                                                                                        The expression k+n-p%k*2*n is designed to give k-n on primes (where p%k=1), and otherwise a "bad" value of k+n that's always bigger in absolute value and so doesn't affect the minimum, so that non-primes are passed over.







                                                                                        share|improve this answer












                                                                                        share|improve this answer



                                                                                        share|improve this answer










                                                                                        answered 5 hours ago









                                                                                        xnorxnor

                                                                                        93.1k18190448




                                                                                        93.1k18190448





















                                                                                            1












                                                                                            $begingroup$


                                                                                            C# (Visual C# Interactive Compiler), 112 bytes





                                                                                            g=>Enumerable.Range(2,2<<20).Where(x=>Enumerable.Range(1,x).Count(y=>x%y<1)<3).OrderBy(x=>Math.Abs(x-g)).First()


                                                                                            Try it online!



                                                                                            Left shifts by 20 in submission but 10 in TIO so that TIO terminates for test cases.






                                                                                            share|improve this answer









                                                                                            $endgroup$

















                                                                                              1












                                                                                              $begingroup$


                                                                                              C# (Visual C# Interactive Compiler), 112 bytes





                                                                                              g=>Enumerable.Range(2,2<<20).Where(x=>Enumerable.Range(1,x).Count(y=>x%y<1)<3).OrderBy(x=>Math.Abs(x-g)).First()


                                                                                              Try it online!



                                                                                              Left shifts by 20 in submission but 10 in TIO so that TIO terminates for test cases.






                                                                                              share|improve this answer









                                                                                              $endgroup$















                                                                                                1












                                                                                                1








                                                                                                1





                                                                                                $begingroup$


                                                                                                C# (Visual C# Interactive Compiler), 112 bytes





                                                                                                g=>Enumerable.Range(2,2<<20).Where(x=>Enumerable.Range(1,x).Count(y=>x%y<1)<3).OrderBy(x=>Math.Abs(x-g)).First()


                                                                                                Try it online!



                                                                                                Left shifts by 20 in submission but 10 in TIO so that TIO terminates for test cases.






                                                                                                share|improve this answer









                                                                                                $endgroup$




                                                                                                C# (Visual C# Interactive Compiler), 112 bytes





                                                                                                g=>Enumerable.Range(2,2<<20).Where(x=>Enumerable.Range(1,x).Count(y=>x%y<1)<3).OrderBy(x=>Math.Abs(x-g)).First()


                                                                                                Try it online!



                                                                                                Left shifts by 20 in submission but 10 in TIO so that TIO terminates for test cases.







                                                                                                share|improve this answer












                                                                                                share|improve this answer



                                                                                                share|improve this answer










                                                                                                answered 13 hours ago









                                                                                                Expired DataExpired Data

                                                                                                3686




                                                                                                3686





















                                                                                                    1












                                                                                                    $begingroup$


                                                                                                    APL (Dyalog Extended), 20 bytesSBCS





                                                                                                    ⊢(⊃>/⍤|⍤-⌽⊢)¯4 4⍭3⌈⊢


                                                                                                    Try it online!



                                                                                                     the argument



                                                                                                    3⌈ max of 3 and that



                                                                                                    ¯4 4⍭ the previous and next primes`



                                                                                                    ⊢() apply the following infix tacit function to that, with the original argument as left argument:



                                                                                                     the primes



                                                                                                     … cyclically rotate them the following number of steps:



                                                                                                      - the original argument minus the primes

                                                                                                       then

                                                                                                      | absolute value of that

                                                                                                       then

                                                                                                      >/ Boolean (0/1) whether the left is greater than the right (i.e. 1 if next is closer)



                                                                                                     pick the first one (i.e. previous if previous is closer and next if next is closer)






                                                                                                    share|improve this answer









                                                                                                    $endgroup$

















                                                                                                      1












                                                                                                      $begingroup$


                                                                                                      APL (Dyalog Extended), 20 bytesSBCS





                                                                                                      ⊢(⊃>/⍤|⍤-⌽⊢)¯4 4⍭3⌈⊢


                                                                                                      Try it online!



                                                                                                       the argument



                                                                                                      3⌈ max of 3 and that



                                                                                                      ¯4 4⍭ the previous and next primes`



                                                                                                      ⊢() apply the following infix tacit function to that, with the original argument as left argument:



                                                                                                       the primes



                                                                                                       … cyclically rotate them the following number of steps:



                                                                                                        - the original argument minus the primes

                                                                                                         then

                                                                                                        | absolute value of that

                                                                                                         then

                                                                                                        >/ Boolean (0/1) whether the left is greater than the right (i.e. 1 if next is closer)



                                                                                                       pick the first one (i.e. previous if previous is closer and next if next is closer)






                                                                                                      share|improve this answer









                                                                                                      $endgroup$















                                                                                                        1












                                                                                                        1








                                                                                                        1





                                                                                                        $begingroup$


                                                                                                        APL (Dyalog Extended), 20 bytesSBCS





                                                                                                        ⊢(⊃>/⍤|⍤-⌽⊢)¯4 4⍭3⌈⊢


                                                                                                        Try it online!



                                                                                                         the argument



                                                                                                        3⌈ max of 3 and that



                                                                                                        ¯4 4⍭ the previous and next primes`



                                                                                                        ⊢() apply the following infix tacit function to that, with the original argument as left argument:



                                                                                                         the primes



                                                                                                         … cyclically rotate them the following number of steps:



                                                                                                          - the original argument minus the primes

                                                                                                           then

                                                                                                          | absolute value of that

                                                                                                           then

                                                                                                          >/ Boolean (0/1) whether the left is greater than the right (i.e. 1 if next is closer)



                                                                                                         pick the first one (i.e. previous if previous is closer and next if next is closer)






                                                                                                        share|improve this answer









                                                                                                        $endgroup$




                                                                                                        APL (Dyalog Extended), 20 bytesSBCS





                                                                                                        ⊢(⊃>/⍤|⍤-⌽⊢)¯4 4⍭3⌈⊢


                                                                                                        Try it online!



                                                                                                         the argument



                                                                                                        3⌈ max of 3 and that



                                                                                                        ¯4 4⍭ the previous and next primes`



                                                                                                        ⊢() apply the following infix tacit function to that, with the original argument as left argument:



                                                                                                         the primes



                                                                                                         … cyclically rotate them the following number of steps:



                                                                                                          - the original argument minus the primes

                                                                                                           then

                                                                                                          | absolute value of that

                                                                                                           then

                                                                                                          >/ Boolean (0/1) whether the left is greater than the right (i.e. 1 if next is closer)



                                                                                                         pick the first one (i.e. previous if previous is closer and next if next is closer)







                                                                                                        share|improve this answer












                                                                                                        share|improve this answer



                                                                                                        share|improve this answer










                                                                                                        answered 12 hours ago









                                                                                                        AdámAdám

                                                                                                        28.6k276207




                                                                                                        28.6k276207





















                                                                                                            1












                                                                                                            $begingroup$

                                                                                                            Swift, 186 bytes



                                                                                                            func p(a:Int)let b=q(a:a,b:-1),c=q(a:a,b:1);print(a-b<=c-a ? b:c)
                                                                                                            func q(a:Int,b:Int)->Intvar k=max(a,2),c=2;while k>c && c != a/2if k%c==0k+=b;c=2elsec=c==2 ? c+1:c+2;return k


                                                                                                            Try it online!






                                                                                                            share|improve this answer









                                                                                                            $endgroup$

















                                                                                                              1












                                                                                                              $begingroup$

                                                                                                              Swift, 186 bytes



                                                                                                              func p(a:Int)let b=q(a:a,b:-1),c=q(a:a,b:1);print(a-b<=c-a ? b:c)
                                                                                                              func q(a:Int,b:Int)->Intvar k=max(a,2),c=2;while k>c && c != a/2if k%c==0k+=b;c=2elsec=c==2 ? c+1:c+2;return k


                                                                                                              Try it online!






                                                                                                              share|improve this answer









                                                                                                              $endgroup$















                                                                                                                1












                                                                                                                1








                                                                                                                1





                                                                                                                $begingroup$

                                                                                                                Swift, 186 bytes



                                                                                                                func p(a:Int)let b=q(a:a,b:-1),c=q(a:a,b:1);print(a-b<=c-a ? b:c)
                                                                                                                func q(a:Int,b:Int)->Intvar k=max(a,2),c=2;while k>c && c != a/2if k%c==0k+=b;c=2elsec=c==2 ? c+1:c+2;return k


                                                                                                                Try it online!






                                                                                                                share|improve this answer









                                                                                                                $endgroup$



                                                                                                                Swift, 186 bytes



                                                                                                                func p(a:Int)let b=q(a:a,b:-1),c=q(a:a,b:1);print(a-b<=c-a ? b:c)
                                                                                                                func q(a:Int,b:Int)->Intvar k=max(a,2),c=2;while k>c && c != a/2if k%c==0k+=b;c=2elsec=c==2 ? c+1:c+2;return k


                                                                                                                Try it online!







                                                                                                                share|improve this answer












                                                                                                                share|improve this answer



                                                                                                                share|improve this answer










                                                                                                                answered 11 hours ago









                                                                                                                onnowebonnoweb

                                                                                                                1613




                                                                                                                1613





















                                                                                                                    1












                                                                                                                    $begingroup$


                                                                                                                    Jelly, 14 bytes



                                                                                                                    ÆpæRÆnạÞƲ2>?2Ḣ


                                                                                                                    Try it online!






                                                                                                                    share|improve this answer









                                                                                                                    $endgroup$

















                                                                                                                      1












                                                                                                                      $begingroup$


                                                                                                                      Jelly, 14 bytes



                                                                                                                      ÆpæRÆnạÞƲ2>?2Ḣ


                                                                                                                      Try it online!






                                                                                                                      share|improve this answer









                                                                                                                      $endgroup$















                                                                                                                        1












                                                                                                                        1








                                                                                                                        1





                                                                                                                        $begingroup$


                                                                                                                        Jelly, 14 bytes



                                                                                                                        ÆpæRÆnạÞƲ2>?2Ḣ


                                                                                                                        Try it online!






                                                                                                                        share|improve this answer









                                                                                                                        $endgroup$




                                                                                                                        Jelly, 14 bytes



                                                                                                                        ÆpæRÆnạÞƲ2>?2Ḣ


                                                                                                                        Try it online!







                                                                                                                        share|improve this answer












                                                                                                                        share|improve this answer



                                                                                                                        share|improve this answer










                                                                                                                        answered 11 hours ago









                                                                                                                        Erik the OutgolferErik the Outgolfer

                                                                                                                        32.9k429106




                                                                                                                        32.9k429106





















                                                                                                                            1












                                                                                                                            $begingroup$


                                                                                                                            C# (Visual C# Interactive Compiler), 96 bytes





                                                                                                                            n=>for(int i=0,j;;)if((j=n+i/2*(i++%2*2-1))>1&&Enumerable.Range(2,j-2).All(d=>j%d>0))return j;


                                                                                                                            Try it online!






                                                                                                                            share|improve this answer









                                                                                                                            $endgroup$

















                                                                                                                              1












                                                                                                                              $begingroup$


                                                                                                                              C# (Visual C# Interactive Compiler), 96 bytes





                                                                                                                              n=>for(int i=0,j;;)if((j=n+i/2*(i++%2*2-1))>1&&Enumerable.Range(2,j-2).All(d=>j%d>0))return j;


                                                                                                                              Try it online!






                                                                                                                              share|improve this answer









                                                                                                                              $endgroup$















                                                                                                                                1












                                                                                                                                1








                                                                                                                                1





                                                                                                                                $begingroup$


                                                                                                                                C# (Visual C# Interactive Compiler), 96 bytes





                                                                                                                                n=>for(int i=0,j;;)if((j=n+i/2*(i++%2*2-1))>1&&Enumerable.Range(2,j-2).All(d=>j%d>0))return j;


                                                                                                                                Try it online!






                                                                                                                                share|improve this answer









                                                                                                                                $endgroup$




                                                                                                                                C# (Visual C# Interactive Compiler), 96 bytes





                                                                                                                                n=>for(int i=0,j;;)if((j=n+i/2*(i++%2*2-1))>1&&Enumerable.Range(2,j-2).All(d=>j%d>0))return j;


                                                                                                                                Try it online!







                                                                                                                                share|improve this answer












                                                                                                                                share|improve this answer



                                                                                                                                share|improve this answer










                                                                                                                                answered 11 hours ago









                                                                                                                                Embodiment of IgnoranceEmbodiment of Ignorance

                                                                                                                                2,218126




                                                                                                                                2,218126





















                                                                                                                                    1












                                                                                                                                    $begingroup$


                                                                                                                                    Zsh, 101 92 91 bytes



                                                                                                                                    -9 by collapsing the body into the head of p's loop, -1 from using i=j instead of i=$1 in main loop.





                                                                                                                                    p()for ((n=2;n<$1&&$1%n++;)):
                                                                                                                                    (($1==n))&&<<<$1
                                                                                                                                    j=$1
                                                                                                                                    for ((i=j;;++j&&--i))p $i||p $j&&exit


                                                                                                                                    Try it online!



                                                                                                                                    Try it online!



                                                                                                                                    57 48 bytes to the prime testing function, 43 42 bytes to the main loop (1 byte to the newline between them):



                                                                                                                                    p() # prime function: takes one input, outputs via return code
                                                                                                                                    for (( n = 2; n < $1 && $1 % n++; )) # divisibility check in loop header
                                                                                                                                    : # no-op loop body
                                                                                                                                    (( $1 == n )) && # if we looped up to $1:
                                                                                                                                    <<< $1 # echo out $1. Otherwise, this will return false



                                                                                                                                    For the last condition, we can't use the shorter (($1-n))||, because we need to return false to the main loop if we didn't find a prime. We print in the function to avoid complexity in the main loop.



                                                                                                                                    j=$1 # set i = j = $1. Doing one in and one out is smallest
                                                                                                                                    for (( i = j; ; ++j && --i )) # loop indefinitely, increment and decrement
                                                                                                                                    p $i || p $j && exit # if either $i or $j was a prime, exit


                                                                                                                                    Conditionals are left-associative, which we take advantage of here. We do test the starting number twice to make the decrement logic simpler.






                                                                                                                                    share|improve this answer










                                                                                                                                    New contributor




                                                                                                                                    GammaFunction is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                                                                                    Check out our Code of Conduct.






                                                                                                                                    $endgroup$

















                                                                                                                                      1












                                                                                                                                      $begingroup$


                                                                                                                                      Zsh, 101 92 91 bytes



                                                                                                                                      -9 by collapsing the body into the head of p's loop, -1 from using i=j instead of i=$1 in main loop.





                                                                                                                                      p()for ((n=2;n<$1&&$1%n++;)):
                                                                                                                                      (($1==n))&&<<<$1
                                                                                                                                      j=$1
                                                                                                                                      for ((i=j;;++j&&--i))p $i||p $j&&exit


                                                                                                                                      Try it online!



                                                                                                                                      Try it online!



                                                                                                                                      57 48 bytes to the prime testing function, 43 42 bytes to the main loop (1 byte to the newline between them):



                                                                                                                                      p() # prime function: takes one input, outputs via return code
                                                                                                                                      for (( n = 2; n < $1 && $1 % n++; )) # divisibility check in loop header
                                                                                                                                      : # no-op loop body
                                                                                                                                      (( $1 == n )) && # if we looped up to $1:
                                                                                                                                      <<< $1 # echo out $1. Otherwise, this will return false



                                                                                                                                      For the last condition, we can't use the shorter (($1-n))||, because we need to return false to the main loop if we didn't find a prime. We print in the function to avoid complexity in the main loop.



                                                                                                                                      j=$1 # set i = j = $1. Doing one in and one out is smallest
                                                                                                                                      for (( i = j; ; ++j && --i )) # loop indefinitely, increment and decrement
                                                                                                                                      p $i || p $j && exit # if either $i or $j was a prime, exit


                                                                                                                                      Conditionals are left-associative, which we take advantage of here. We do test the starting number twice to make the decrement logic simpler.






                                                                                                                                      share|improve this answer










                                                                                                                                      New contributor




                                                                                                                                      GammaFunction is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                                                                                      Check out our Code of Conduct.






                                                                                                                                      $endgroup$















                                                                                                                                        1












                                                                                                                                        1








                                                                                                                                        1





                                                                                                                                        $begingroup$


                                                                                                                                        Zsh, 101 92 91 bytes



                                                                                                                                        -9 by collapsing the body into the head of p's loop, -1 from using i=j instead of i=$1 in main loop.





                                                                                                                                        p()for ((n=2;n<$1&&$1%n++;)):
                                                                                                                                        (($1==n))&&<<<$1
                                                                                                                                        j=$1
                                                                                                                                        for ((i=j;;++j&&--i))p $i||p $j&&exit


                                                                                                                                        Try it online!



                                                                                                                                        Try it online!



                                                                                                                                        57 48 bytes to the prime testing function, 43 42 bytes to the main loop (1 byte to the newline between them):



                                                                                                                                        p() # prime function: takes one input, outputs via return code
                                                                                                                                        for (( n = 2; n < $1 && $1 % n++; )) # divisibility check in loop header
                                                                                                                                        : # no-op loop body
                                                                                                                                        (( $1 == n )) && # if we looped up to $1:
                                                                                                                                        <<< $1 # echo out $1. Otherwise, this will return false



                                                                                                                                        For the last condition, we can't use the shorter (($1-n))||, because we need to return false to the main loop if we didn't find a prime. We print in the function to avoid complexity in the main loop.



                                                                                                                                        j=$1 # set i = j = $1. Doing one in and one out is smallest
                                                                                                                                        for (( i = j; ; ++j && --i )) # loop indefinitely, increment and decrement
                                                                                                                                        p $i || p $j && exit # if either $i or $j was a prime, exit


                                                                                                                                        Conditionals are left-associative, which we take advantage of here. We do test the starting number twice to make the decrement logic simpler.






                                                                                                                                        share|improve this answer










                                                                                                                                        New contributor




                                                                                                                                        GammaFunction is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                                                                                        Check out our Code of Conduct.






                                                                                                                                        $endgroup$




                                                                                                                                        Zsh, 101 92 91 bytes



                                                                                                                                        -9 by collapsing the body into the head of p's loop, -1 from using i=j instead of i=$1 in main loop.





                                                                                                                                        p()for ((n=2;n<$1&&$1%n++;)):
                                                                                                                                        (($1==n))&&<<<$1
                                                                                                                                        j=$1
                                                                                                                                        for ((i=j;;++j&&--i))p $i||p $j&&exit


                                                                                                                                        Try it online!



                                                                                                                                        Try it online!



                                                                                                                                        57 48 bytes to the prime testing function, 43 42 bytes to the main loop (1 byte to the newline between them):



                                                                                                                                        p() # prime function: takes one input, outputs via return code
                                                                                                                                        for (( n = 2; n < $1 && $1 % n++; )) # divisibility check in loop header
                                                                                                                                        : # no-op loop body
                                                                                                                                        (( $1 == n )) && # if we looped up to $1:
                                                                                                                                        <<< $1 # echo out $1. Otherwise, this will return false



                                                                                                                                        For the last condition, we can't use the shorter (($1-n))||, because we need to return false to the main loop if we didn't find a prime. We print in the function to avoid complexity in the main loop.



                                                                                                                                        j=$1 # set i = j = $1. Doing one in and one out is smallest
                                                                                                                                        for (( i = j; ; ++j && --i )) # loop indefinitely, increment and decrement
                                                                                                                                        p $i || p $j && exit # if either $i or $j was a prime, exit


                                                                                                                                        Conditionals are left-associative, which we take advantage of here. We do test the starting number twice to make the decrement logic simpler.







                                                                                                                                        share|improve this answer










                                                                                                                                        New contributor




                                                                                                                                        GammaFunction is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                                                                                        Check out our Code of Conduct.









                                                                                                                                        share|improve this answer



                                                                                                                                        share|improve this answer








                                                                                                                                        edited 9 hours ago





















                                                                                                                                        New contributor




                                                                                                                                        GammaFunction is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                                                                                        Check out our Code of Conduct.









                                                                                                                                        answered 10 hours ago









                                                                                                                                        GammaFunctionGammaFunction

                                                                                                                                        1716




                                                                                                                                        1716




                                                                                                                                        New contributor




                                                                                                                                        GammaFunction is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                                                                                        Check out our Code of Conduct.





                                                                                                                                        New contributor





                                                                                                                                        GammaFunction is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                                                                                        Check out our Code of Conduct.






                                                                                                                                        GammaFunction is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
                                                                                                                                        Check out our Code of Conduct.





















                                                                                                                                            1












                                                                                                                                            $begingroup$

                                                                                                                                            C, 122 bytes



                                                                                                                                            #define r return
                                                                                                                                            p(a,i)if(a<2)r 0;i=1;while(++i<a)if(a%i<1)r 0;r 1;c(a,b)b=a;while(1)if(p(b))r b;if(p(--a))r a;b++;


                                                                                                                                            Use it calling function c() and passing as argument the number, it should return the closest prime.






                                                                                                                                            share|improve this answer









                                                                                                                                            $endgroup$












                                                                                                                                            • $begingroup$
                                                                                                                                              But c() receives two parameters... Also, you can probably shorten the while(1) to for(;;) (untested, since I don't get how to run your code
                                                                                                                                              $endgroup$
                                                                                                                                              – Embodiment of Ignorance
                                                                                                                                              44 mins ago















                                                                                                                                            1












                                                                                                                                            $begingroup$

                                                                                                                                            C, 122 bytes



                                                                                                                                            #define r return
                                                                                                                                            p(a,i)if(a<2)r 0;i=1;while(++i<a)if(a%i<1)r 0;r 1;c(a,b)b=a;while(1)if(p(b))r b;if(p(--a))r a;b++;


                                                                                                                                            Use it calling function c() and passing as argument the number, it should return the closest prime.






                                                                                                                                            share|improve this answer









                                                                                                                                            $endgroup$












                                                                                                                                            • $begingroup$
                                                                                                                                              But c() receives two parameters... Also, you can probably shorten the while(1) to for(;;) (untested, since I don't get how to run your code
                                                                                                                                              $endgroup$
                                                                                                                                              – Embodiment of Ignorance
                                                                                                                                              44 mins ago













                                                                                                                                            1












                                                                                                                                            1








                                                                                                                                            1





                                                                                                                                            $begingroup$

                                                                                                                                            C, 122 bytes



                                                                                                                                            #define r return
                                                                                                                                            p(a,i)if(a<2)r 0;i=1;while(++i<a)if(a%i<1)r 0;r 1;c(a,b)b=a;while(1)if(p(b))r b;if(p(--a))r a;b++;


                                                                                                                                            Use it calling function c() and passing as argument the number, it should return the closest prime.






                                                                                                                                            share|improve this answer









                                                                                                                                            $endgroup$



                                                                                                                                            C, 122 bytes



                                                                                                                                            #define r return
                                                                                                                                            p(a,i)if(a<2)r 0;i=1;while(++i<a)if(a%i<1)r 0;r 1;c(a,b)b=a;while(1)if(p(b))r b;if(p(--a))r a;b++;


                                                                                                                                            Use it calling function c() and passing as argument the number, it should return the closest prime.







                                                                                                                                            share|improve this answer












                                                                                                                                            share|improve this answer



                                                                                                                                            share|improve this answer










                                                                                                                                            answered 9 hours ago









                                                                                                                                            Lince AssassinoLince Assassino

                                                                                                                                            914




                                                                                                                                            914











                                                                                                                                            • $begingroup$
                                                                                                                                              But c() receives two parameters... Also, you can probably shorten the while(1) to for(;;) (untested, since I don't get how to run your code
                                                                                                                                              $endgroup$
                                                                                                                                              – Embodiment of Ignorance
                                                                                                                                              44 mins ago
















                                                                                                                                            • $begingroup$
                                                                                                                                              But c() receives two parameters... Also, you can probably shorten the while(1) to for(;;) (untested, since I don't get how to run your code
                                                                                                                                              $endgroup$
                                                                                                                                              – Embodiment of Ignorance
                                                                                                                                              44 mins ago















                                                                                                                                            $begingroup$
                                                                                                                                            But c() receives two parameters... Also, you can probably shorten the while(1) to for(;;) (untested, since I don't get how to run your code
                                                                                                                                            $endgroup$
                                                                                                                                            – Embodiment of Ignorance
                                                                                                                                            44 mins ago




                                                                                                                                            $begingroup$
                                                                                                                                            But c() receives two parameters... Also, you can probably shorten the while(1) to for(;;) (untested, since I don't get how to run your code
                                                                                                                                            $endgroup$
                                                                                                                                            – Embodiment of Ignorance
                                                                                                                                            44 mins ago











                                                                                                                                            1












                                                                                                                                            $begingroup$

                                                                                                                                            Python 2, 93 bytes





                                                                                                                                            lambda n:sorted(range(1,3*n),key=lambda x:abs(x-n)if all(x%k for k in range(2,x))else 2*n)[0]





                                                                                                                                            share|improve this answer











                                                                                                                                            $endgroup$








                                                                                                                                            • 1




                                                                                                                                              $begingroup$
                                                                                                                                              You don't need the f= in the start
                                                                                                                                              $endgroup$
                                                                                                                                              – Embodiment of Ignorance
                                                                                                                                              9 hours ago










                                                                                                                                            • $begingroup$
                                                                                                                                              @EmbodimentofIgnorance Thanks, fixed that along with the range and non-prime penalty criteria that was causing n=1 to fail
                                                                                                                                              $endgroup$
                                                                                                                                              – deustice
                                                                                                                                              8 hours ago






                                                                                                                                            • 1




                                                                                                                                              $begingroup$
                                                                                                                                              The primality check doesn't work for Fermat pseudoprimes such as 341=31*11 which it calls prime.
                                                                                                                                              $endgroup$
                                                                                                                                              – xnor
                                                                                                                                              8 hours ago










                                                                                                                                            • $begingroup$
                                                                                                                                              @xnor Fixed, thanks
                                                                                                                                              $endgroup$
                                                                                                                                              – deustice
                                                                                                                                              7 hours ago















                                                                                                                                            1












                                                                                                                                            $begingroup$

                                                                                                                                            Python 2, 93 bytes





                                                                                                                                            lambda n:sorted(range(1,3*n),key=lambda x:abs(x-n)if all(x%k for k in range(2,x))else 2*n)[0]





                                                                                                                                            share|improve this answer











                                                                                                                                            $endgroup$








                                                                                                                                            • 1




                                                                                                                                              $begingroup$
                                                                                                                                              You don't need the f= in the start
                                                                                                                                              $endgroup$
                                                                                                                                              – Embodiment of Ignorance
                                                                                                                                              9 hours ago










                                                                                                                                            • $begingroup$
                                                                                                                                              @EmbodimentofIgnorance Thanks, fixed that along with the range and non-prime penalty criteria that was causing n=1 to fail
                                                                                                                                              $endgroup$
                                                                                                                                              – deustice
                                                                                                                                              8 hours ago






                                                                                                                                            • 1




                                                                                                                                              $begingroup$
                                                                                                                                              The primality check doesn't work for Fermat pseudoprimes such as 341=31*11 which it calls prime.
                                                                                                                                              $endgroup$
                                                                                                                                              – xnor
                                                                                                                                              8 hours ago










                                                                                                                                            • $begingroup$
                                                                                                                                              @xnor Fixed, thanks
                                                                                                                                              $endgroup$
                                                                                                                                              – deustice
                                                                                                                                              7 hours ago













                                                                                                                                            1












                                                                                                                                            1








                                                                                                                                            1





                                                                                                                                            $begingroup$

                                                                                                                                            Python 2, 93 bytes





                                                                                                                                            lambda n:sorted(range(1,3*n),key=lambda x:abs(x-n)if all(x%k for k in range(2,x))else 2*n)[0]





                                                                                                                                            share|improve this answer











                                                                                                                                            $endgroup$



                                                                                                                                            Python 2, 93 bytes





                                                                                                                                            lambda n:sorted(range(1,3*n),key=lambda x:abs(x-n)if all(x%k for k in range(2,x))else 2*n)[0]






                                                                                                                                            share|improve this answer














                                                                                                                                            share|improve this answer



                                                                                                                                            share|improve this answer








                                                                                                                                            edited 7 hours ago

























                                                                                                                                            answered 10 hours ago









                                                                                                                                            deusticedeustice

                                                                                                                                            614




                                                                                                                                            614







                                                                                                                                            • 1




                                                                                                                                              $begingroup$
                                                                                                                                              You don't need the f= in the start
                                                                                                                                              $endgroup$
                                                                                                                                              – Embodiment of Ignorance
                                                                                                                                              9 hours ago










                                                                                                                                            • $begingroup$
                                                                                                                                              @EmbodimentofIgnorance Thanks, fixed that along with the range and non-prime penalty criteria that was causing n=1 to fail
                                                                                                                                              $endgroup$
                                                                                                                                              – deustice
                                                                                                                                              8 hours ago






                                                                                                                                            • 1




                                                                                                                                              $begingroup$
                                                                                                                                              The primality check doesn't work for Fermat pseudoprimes such as 341=31*11 which it calls prime.
                                                                                                                                              $endgroup$
                                                                                                                                              – xnor
                                                                                                                                              8 hours ago










                                                                                                                                            • $begingroup$
                                                                                                                                              @xnor Fixed, thanks
                                                                                                                                              $endgroup$
                                                                                                                                              – deustice
                                                                                                                                              7 hours ago












                                                                                                                                            • 1




                                                                                                                                              $begingroup$
                                                                                                                                              You don't need the f= in the start
                                                                                                                                              $endgroup$
                                                                                                                                              – Embodiment of Ignorance
                                                                                                                                              9 hours ago










                                                                                                                                            • $begingroup$
                                                                                                                                              @EmbodimentofIgnorance Thanks, fixed that along with the range and non-prime penalty criteria that was causing n=1 to fail
                                                                                                                                              $endgroup$
                                                                                                                                              – deustice
                                                                                                                                              8 hours ago






                                                                                                                                            • 1




                                                                                                                                              $begingroup$
                                                                                                                                              The primality check doesn't work for Fermat pseudoprimes such as 341=31*11 which it calls prime.
                                                                                                                                              $endgroup$
                                                                                                                                              – xnor
                                                                                                                                              8 hours ago










                                                                                                                                            • $begingroup$
                                                                                                                                              @xnor Fixed, thanks
                                                                                                                                              $endgroup$
                                                                                                                                              – deustice
                                                                                                                                              7 hours ago







                                                                                                                                            1




                                                                                                                                            1




                                                                                                                                            $begingroup$
                                                                                                                                            You don't need the f= in the start
                                                                                                                                            $endgroup$
                                                                                                                                            – Embodiment of Ignorance
                                                                                                                                            9 hours ago




                                                                                                                                            $begingroup$
                                                                                                                                            You don't need the f= in the start
                                                                                                                                            $endgroup$
                                                                                                                                            – Embodiment of Ignorance
                                                                                                                                            9 hours ago












                                                                                                                                            $begingroup$
                                                                                                                                            @EmbodimentofIgnorance Thanks, fixed that along with the range and non-prime penalty criteria that was causing n=1 to fail
                                                                                                                                            $endgroup$
                                                                                                                                            – deustice
                                                                                                                                            8 hours ago




                                                                                                                                            $begingroup$
                                                                                                                                            @EmbodimentofIgnorance Thanks, fixed that along with the range and non-prime penalty criteria that was causing n=1 to fail
                                                                                                                                            $endgroup$
                                                                                                                                            – deustice
                                                                                                                                            8 hours ago




                                                                                                                                            1




                                                                                                                                            1




                                                                                                                                            $begingroup$
                                                                                                                                            The primality check doesn't work for Fermat pseudoprimes such as 341=31*11 which it calls prime.
                                                                                                                                            $endgroup$
                                                                                                                                            – xnor
                                                                                                                                            8 hours ago




                                                                                                                                            $begingroup$
                                                                                                                                            The primality check doesn't work for Fermat pseudoprimes such as 341=31*11 which it calls prime.
                                                                                                                                            $endgroup$
                                                                                                                                            – xnor
                                                                                                                                            8 hours ago












                                                                                                                                            $begingroup$
                                                                                                                                            @xnor Fixed, thanks
                                                                                                                                            $endgroup$
                                                                                                                                            – deustice
                                                                                                                                            7 hours ago




                                                                                                                                            $begingroup$
                                                                                                                                            @xnor Fixed, thanks
                                                                                                                                            $endgroup$
                                                                                                                                            – deustice
                                                                                                                                            7 hours ago











                                                                                                                                            1












                                                                                                                                            $begingroup$


                                                                                                                                            J, 19 15 bytes



                                                                                                                                            (0{]/:|@-)p:@i.


                                                                                                                                            Try it online!






                                                                                                                                            share|improve this answer











                                                                                                                                            $endgroup$

















                                                                                                                                              1












                                                                                                                                              $begingroup$


                                                                                                                                              J, 19 15 bytes



                                                                                                                                              (0{]/:|@-)p:@i.


                                                                                                                                              Try it online!






                                                                                                                                              share|improve this answer











                                                                                                                                              $endgroup$















                                                                                                                                                1












                                                                                                                                                1








                                                                                                                                                1





                                                                                                                                                $begingroup$


                                                                                                                                                J, 19 15 bytes



                                                                                                                                                (0{]/:|@-)p:@i.


                                                                                                                                                Try it online!






                                                                                                                                                share|improve this answer











                                                                                                                                                $endgroup$




                                                                                                                                                J, 19 15 bytes



                                                                                                                                                (0{]/:|@-)p:@i.


                                                                                                                                                Try it online!







                                                                                                                                                share|improve this answer














                                                                                                                                                share|improve this answer



                                                                                                                                                share|improve this answer








                                                                                                                                                edited 6 hours ago

























                                                                                                                                                answered 9 hours ago









                                                                                                                                                Galen IvanovGalen Ivanov

                                                                                                                                                7,31211034




                                                                                                                                                7,31211034



























                                                                                                                                                    draft saved

                                                                                                                                                    draft discarded
















































                                                                                                                                                    If this is an answer to a challenge…



                                                                                                                                                    • …Be sure to follow the challenge specification. However, please refrain from exploiting obvious loopholes. Answers abusing any of the standard loopholes are considered invalid. If you think a specification is unclear or underspecified, comment on the question instead.


                                                                                                                                                    • …Try to optimize your score. For instance, answers to code-golf challenges should attempt to be as short as possible. You can always include a readable version of the code in addition to the competitive one.
                                                                                                                                                      Explanations of your answer make it more interesting to read and are very much encouraged.


                                                                                                                                                    • …Include a short header which indicates the language(s) of your code and its score, as defined by the challenge.


                                                                                                                                                    More generally…



                                                                                                                                                    • …Please make sure to answer the question and provide sufficient detail.


                                                                                                                                                    • …Avoid asking for help, clarification or responding to other answers (use comments instead).




                                                                                                                                                    draft saved


                                                                                                                                                    draft discarded














                                                                                                                                                    StackExchange.ready(
                                                                                                                                                    function ()
                                                                                                                                                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcodegolf.stackexchange.com%2fquestions%2f182305%2freturn-the-closest-prime-number%23new-answer', 'question_page');

                                                                                                                                                    );

                                                                                                                                                    Post as a guest















                                                                                                                                                    Required, but never shown





















































                                                                                                                                                    Required, but never shown














                                                                                                                                                    Required, but never shown












                                                                                                                                                    Required, but never shown







                                                                                                                                                    Required, but never shown

































                                                                                                                                                    Required, but never shown














                                                                                                                                                    Required, but never shown












                                                                                                                                                    Required, but never shown







                                                                                                                                                    Required, but never shown







                                                                                                                                                    Popular posts from this blog

                                                                                                                                                    Log på Navigationsmenu

                                                                                                                                                    Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                                                                                                                                                    Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5