Finding the error in an argumentChain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^fracyz$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables

Should I tell management that I intend to leave due to bad software development practices?

How could indestructible materials be used in power generation?

How to find if SQL server backup is encrypted with TDE without restoring the backup

How to show a landlord what we have in savings?

Theorists sure want true answers to this!

Forgetting the musical notes while performing in concert

Why were 5.25" floppy drives cheaper than 8"?

Was the old ablative pronoun "med" or "mēd"?

How badly should I try to prevent a user from XSSing themselves?

What are the G forces leaving Earth orbit?

What exactly is ineptocracy?

Does Dispel Magic work on Tiny Hut?

What reasons are there for a Capitalist to oppose a 100% inheritance tax?

Mathematica command that allows it to read my intentions

How can saying a song's name be a copyright violation?

What is the fastest integer factorization to break RSA?

How to stretch the corners of this image so that it looks like a perfect rectangle?

Does int main() need a declaration on C++?

Placement of More Information/Help Icon button for Radio Buttons

Is this draw by repetition?

What Exploit Are These User Agents Trying to Use?

Why are UK visa biometrics appointments suspended at USCIS Application Support Centers?

One verb to replace 'be a member of' a club

How can a day be of 24 hours?



Finding the error in an argument


Chain rule notation for function with two variablesThe multivariable chain rule and functions that depend on themselvesCalculate partial derivative $f'_x, f'_y, f'_z$ where $f(x, y, z) = x^fracyz$Simple Chain Rule for PartialsChain rule for partial derivativesQuestion regarding the proof of the directional derivativePartial derivative of a function w.r.t an argument that occurs multiple timesDerivative of function of matrices using the product ruleWhen to use Partial derivatives and chain rulePartial derivative with dependent variables













3












$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    1 hour ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    1 hour ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    1 hour ago















3












$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    1 hour ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    1 hour ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    1 hour ago













3












3








3





$begingroup$


If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.










share|cite|improve this question











$endgroup$




If $z=f(x,y)$ and $y=x^2$, then by the chain rule



$fracpartial zpartial x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$



Therefore



$2xfracpartial zpartial y=0$



and



$fracpartial zpartial y=0$



What is wrong with this argument?



I have a feeling that



1.) $x$ and $y$ do not have partial derivatives because they are single-variable, and



2.) $fracpartial zpartial y$ cannot be zero, because $y=x^2$ and therefore the derivative of any $y$ term exists.



How is my reasoning? I am pretty confused by this question.







calculus multivariable-calculus partial-derivative






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago







mathenthusiast

















asked 2 hours ago









mathenthusiastmathenthusiast

758




758











  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    1 hour ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    1 hour ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    1 hour ago
















  • $begingroup$
    My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
    $endgroup$
    – BSplitter
    1 hour ago







  • 1




    $begingroup$
    I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
    $endgroup$
    – BSplitter
    1 hour ago










  • $begingroup$
    @BSplitter the problem itself poses this argument as incorrect, the object being to find out why
    $endgroup$
    – mathenthusiast
    1 hour ago















$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
1 hour ago





$begingroup$
My first question for you is why do you think this line of reasoning is incorrect? Did someone tell you it wasn't right?
$endgroup$
– BSplitter
1 hour ago





1




1




$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
1 hour ago




$begingroup$
I also will note that if $2xfracpartial zpartial y =0$, then either $x=0$ or $fracpartial zpartial y =0$.
$endgroup$
– BSplitter
1 hour ago












$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
1 hour ago




$begingroup$
@BSplitter the problem itself poses this argument as incorrect, the object being to find out why
$endgroup$
– mathenthusiast
1 hour ago










1 Answer
1






active

oldest

votes


















4












$begingroup$

Nothing wrong. Just change it into



$$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



Actually, a better way to say this is that



$$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



Where I have clearly written down the restriction $y=x^2$.






share|cite|improve this answer









$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "69"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );













    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    4












    $begingroup$

    Nothing wrong. Just change it into



    $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



    Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



    Actually, a better way to say this is that



    $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



    Where I have clearly written down the restriction $y=x^2$.






    share|cite|improve this answer









    $endgroup$

















      4












      $begingroup$

      Nothing wrong. Just change it into



      $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



      Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



      Actually, a better way to say this is that



      $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



      Where I have clearly written down the restriction $y=x^2$.






      share|cite|improve this answer









      $endgroup$















        4












        4








        4





        $begingroup$

        Nothing wrong. Just change it into



        $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



        Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



        Actually, a better way to say this is that



        $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



        Where I have clearly written down the restriction $y=x^2$.






        share|cite|improve this answer









        $endgroup$



        Nothing wrong. Just change it into



        $$fracd zd x=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y$$



        Note that that the first term is $fracd zd x$, which is different from $fracpartial zpartial x$. So they cannot cancel out. The partial derivatives do exist, but be careful not to mix it up with $fracd zd x$, which is NOT a partial derivative.



        Actually, a better way to say this is that



        $$left[fracpartial zpartial xright]_y=x^2=fracpartial zpartial xfracpartial xpartial x+fracpartial zpartial yfracpartial ypartial x=fracpartial zpartial x+2xfracpartial zpartial y.$$



        Where I have clearly written down the restriction $y=x^2$.







        share|cite|improve this answer












        share|cite|improve this answer



        share|cite|improve this answer










        answered 1 hour ago









        Holding ArthurHolding Arthur

        1,360417




        1,360417



























            draft saved

            draft discarded
















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3172680%2ffinding-the-error-in-an-argument%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Log på Navigationsmenu

            Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

            Detroit Tigers Spis treści Historia | Skład zespołu | Sukcesy | Członkowie Baseball Hall of Fame | Zastrzeżone numery | Przypisy | Menu nawigacyjneEncyclopedia of Detroit - Detroit TigersTigers Stadium, Detroit, MITigers Timeline 1900sDetroit Tigers Team History & EncyclopediaTigers Timeline 1910s1935 World Series1945 World Series1945 World Series1984 World SeriesComerica Park, Detroit, MI2006 World Series2012 World SeriesDetroit Tigers 40-Man RosterDetroit Tigers Coaching StaffTigers Hall of FamersTigers Retired Numberse