Why does GHC infer a monomorphic type here, even with MonomorphismRestriction disabled? The Next CEO of Stack OverflowResolving the type of `f = f (<*>) pure`NoMonomorphismRestriction helps preserve sharing?How can eta-reduction of a well typed function result in a type error?Can I write such polymorphic function? What language extensions do I need?GHC rewrite rule specialising a function for a type classType Inference in PatternsHow to type check recursive definitions using Algorithm W?What is the monomorphism restriction?Why are higher rank types so fragile in HaskellWhy can't GHC typecheck this function involving polymorphism and existential types?Problems With Type Inference on (^)

How can I quit an app using Terminal?

What is the point of a new vote on May's deal when the indicative votes suggest she will not win?

Would this house-rule that treats advantage as a +1 to the roll instead (and disadvantage as -1) and allows them to stack be balanced?

Why did we only see the N-1 starfighters in one film?

Horror movie/show or scene where a horse creature opens its mouth really wide and devours a man in a stables

Apart from "berlinern", do any other German dialects have a corresponding verb?

Trouble understanding the speech of overseas colleagues

How to get regions to plot as graphics

How do we know the LHC results are robust?

Is HostGator storing my password in plaintext?

How can I open an app using Terminal?

Inappropriate reference requests from Journal reviewers

How to use tikz in fbox?

How to write papers efficiently when English isn't my first language?

What can we do to stop prior company from asking us questions?

Term for the "extreme-extension" version of a straw man fallacy?

Rotate a column

Why didn't Khan get resurrected in the Genesis Explosion?

How to write the block matrix in LaTex?

Why doesn't a table tennis ball float on the surface? How do we calculate buoyancy here?

Too much space between section and text in a twocolumn document

Is a stroke of luck acceptable after a series of unfavorable events?

How to be diplomatic in refusing to write code that breaches the privacy of our users

How do scammers retract money, while you can’t?



Why does GHC infer a monomorphic type here, even with MonomorphismRestriction disabled?



The Next CEO of Stack OverflowResolving the type of `f = f (<*>) pure`NoMonomorphismRestriction helps preserve sharing?How can eta-reduction of a well typed function result in a type error?Can I write such polymorphic function? What language extensions do I need?GHC rewrite rule specialising a function for a type classType Inference in PatternsHow to type check recursive definitions using Algorithm W?What is the monomorphism restriction?Why are higher rank types so fragile in HaskellWhy can't GHC typecheck this function involving polymorphism and existential types?Problems With Type Inference on (^)










16















This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?










share|improve this question
























  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    10 hours ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    10 hours ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    9 hours ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    9 hours ago
















16















This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?










share|improve this question
























  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    10 hours ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    10 hours ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    9 hours ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    9 hours ago














16












16








16


2






This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?










share|improve this question
















This was prompted by Resolving the type of `f = f (<*>) pure`, which discusses a more complicated example, but this one works too.



The following definition compiles without problem:



w :: Integral a => a
w = fromInteger w


...Of course it doesn't work runtime-wise, but that's beside the question. The point is that the definition of w itself uses a specialised version of w :: Integer. Clearly that is a suitable instantiation, and therefore typechecks.



However, if we remove the signature, then GHC infers not the above type, but only the concrete one:



w' = fromInteger w'


GHCi> :t w
w :: Integral a => a
GHCi> :t w'
w' :: Integer


Well, when I saw this, I was fairly sure this was the monomorphism restriction at work. It's well known that also e.g.



i = 3


GHCi> :t i
i :: Integer


although i :: Num p => p would be perfectly possible. And indeed, i :: Num p => p is inferred if -XNoMonomorphismRestriction is active, i.e. if the monomorphism restriction is disabled.



However, in case of w' only the type Integer is inferred even when the monomorphism restriction is disabled.



To count out that this has something to do with defaulting:



fromFloat :: RealFrac a => Float -> a
q :: RealFrac a => a
q = fromFloat q
q' = fromFloat q'


GHCi> :t q
q :: RealFrac a => a
GHCi> :t q'
q' :: Float


Why is the polymorphic type not inferred?







haskell recursion type-inference parametric-polymorphism






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited 7 hours ago







leftaroundabout

















asked 10 hours ago









leftaroundaboutleftaroundabout

80.1k3119237




80.1k3119237












  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    10 hours ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    10 hours ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    9 hours ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    9 hours ago


















  • Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

    – Alec
    10 hours ago











  • @Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

    – leftaroundabout
    10 hours ago











  • I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

    – Robin Zigmond
    9 hours ago











  • @RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

    – leftaroundabout
    9 hours ago

















Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

– Alec
10 hours ago





Doesn't the monomorphism restriction apply only to simple bindings anyways (and w' = fromInteger w', being recursive, is not simple)?

– Alec
10 hours ago













@Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

– leftaroundabout
10 hours ago





@Alec possible, but still – why does something like the monomorphism restriction seem to kick in here?

– leftaroundabout
10 hours ago













I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

– Robin Zigmond
9 hours ago





I'm probably being dense and missing something here, but fromInteger has type (Num a) => Integer -> a, and since w' is used as the input to fromInteger, doesn't that mean Integer is the only possible type for it? Indeed I'm rather surprised that the version with the polymorphic type signature compiles. (So as I said, probably missing something.)

– Robin Zigmond
9 hours ago













@RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

– leftaroundabout
9 hours ago






@RobinZigmond Integer is certainly the only possible monomorphic type for w', but as w demonstrates a polymorphic type is perfectly fine as well. After all, a polymorphic type can be instantiated to a monomorphic one, provided it fulfills the constraints.

– leftaroundabout
9 hours ago













1 Answer
1






active

oldest

votes


















18














Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer




















  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    8 hours ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    8 hours ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    6 hours ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    5 hours ago











Your Answer






StackExchange.ifUsing("editor", function ()
StackExchange.using("externalEditor", function ()
StackExchange.using("snippets", function ()
StackExchange.snippets.init();
);
);
, "code-snippets");

StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "1"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55402733%2fwhy-does-ghc-infer-a-monomorphic-type-here-even-with-monomorphismrestriction-di%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









18














Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer




















  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    8 hours ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    8 hours ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    6 hours ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    5 hours ago















18














Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer




















  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    8 hours ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    8 hours ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    6 hours ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    5 hours ago













18












18








18







Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)





share|improve this answer















Polymorphic recursion (where a function calls itself at a different type than the one at which it was called) always requires a type signature. The full explanation is in Section 4.4.1 of the Haskell 2010 Report:




If a variable f is defined without providing a corresponding type signature declaration, then each use of f outside its own declaration group (see Section 4.5) is treated as having the corresponding inferred, or principal type. However, to ensure that type inference is still possible, the defining occurrence, and all uses of f within its declaration group must have the same monomorphic type (from which the principal type is obtained by generalization, as described in Section 4.5.2).




The same section later presents an example of polymorphic recursion supported by a type signature.



My understanding is that unaided type inference is generally undecidable in the presence of polymorphic recursion, so Haskell doesn't even try.



In this case, the type checker starts with



w :: a


where a is a meta-variable. Since fromInteger is called with w as an argument within its own declaration (and therefore within its declaration group), the type checker unifies a with Integer. There are no variables left to generalize.



A slight modification of your program gives a different result for the same reason:



v = fromIntegral v


By your original reasoning, Haskell would infer v :: forall a. Num a => a, defaulting the v on the RHS to type Integer:



v :: forall a. Num a => a
v = fromIntegral (v :: Integer)


But instead, it starts with v :: a. Since v is passed to fromIntegral, it imposes Integral a. Finally, it generalizes a. In the end, the program turns out to be



v :: forall a. Integral a => a
v = fromIntegral (v :: a)






share|improve this answer














share|improve this answer



share|improve this answer








edited 4 hours ago

























answered 9 hours ago









dfeuerdfeuer

33.6k349133




33.6k349133







  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    8 hours ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    8 hours ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    6 hours ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    5 hours ago












  • 2





    My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

    – Bakuriu
    8 hours ago






  • 2





    @Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

    – dfeuer
    8 hours ago












  • Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

    – Bakuriu
    6 hours ago











  • @Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

    – dfeuer
    5 hours ago







2




2





My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

– Bakuriu
8 hours ago





My bachelor was about a simple type inferencer for a subset of Haskell including typeclasses & polymorphic recursion. A very simple approach is to limit the depth of the polymorphic recursion up to k depth. Most useful cases of polymorphic recursion can be inferred with a very low depth bound (like k=1 or k=2). Anyway Haskell type inference is already undecidable so that's not the only reason why it's not allowed. An other reason is probably performance, it surely makes type inference O(k·f(n)) instead of O(f(n)) since you may need to do all over again for k times.

– Bakuriu
8 hours ago




2




2





@Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

– dfeuer
8 hours ago






@Bakuriu, I am pretty sure that Haskell 2010 without polymorphic recursion has full type inference--it's basically Hindley-Milner at that point, plus type classes and defaulting. Do you have a reference saying otherwise? As for some limited recursion depth: that sounds like a potentially useful extension, but it has a very different flavor from what the Haskell Report tends to do. I would find such a feature most useful for discovering the right type signatures for polymorphic recursive code.

– dfeuer
8 hours ago














Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

– Bakuriu
6 hours ago





Yes, but I think all extensions to the type systems on top of Haskell2010 make type inference undecidable. Note that for example Type families are "artificially" limited to avoid undecidable instances by forbidding certain well-formed programs by default, so allowing a "k-recursive" polymorphic recursion would not be very different from that case, IMHO.

– Bakuriu
6 hours ago













@Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

– dfeuer
5 hours ago





@Bakuriu, just for my own curiosity: how much of Data.Sequence could be inferred with bounded polymorphic recursion depth? I'm not quite sure what you mean when you say "depth" in this context.

– dfeuer
5 hours ago



















draft saved

draft discarded
















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f55402733%2fwhy-does-ghc-infer-a-monomorphic-type-here-even-with-monomorphismrestriction-di%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Log på Navigationsmenu

Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5