Are there continuous functions who are the same in an interval but differ in at least one other point? The 2019 Stack Overflow Developer Survey Results Are In Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Function which is continuous everywhere in its domain, but differentiable only at one pointAre there non-periodic continuous functions with this property?Derivative defined at some point but not continuous there?Are the two statements about continuous functions equivalent?Prove or disprove: for any two given functions, one must be upper bounding the otherIf a function is derivable in a point then there exists an open interval around the point in which the function is continuousIs there a function on a compact interval that is differentiable but not Lipschitz continuous?Are there continuous functions for which the epsilon-delta property doesn't hold?Show that two continuous functions that are surjective over the same interval intersectProve a non-constant continuous function on a compact interval must admit at least one non-local extremum
Do I have Disadvantage attacking with an off-hand weapon?
Is there a way to generate uniformly distributed points on a sphere from a fixed amount of random real numbers per point?
Are spiders unable to hurt humans, especially very small spiders?
Is there a writing software that you can sort scenes like slides in PowerPoint?
How to read αἱμύλιος or when to aspirate
Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?
Windows 10: How to Lock (not sleep) laptop on lid close?
Can a flute soloist sit?
Match Roman Numerals
Why not take a picture of a closer black hole?
Variable with quotation marks "$()"
For what reasons would an animal species NOT cross a *horizontal* land bridge?
How did the audience guess the pentatonic scale in Bobby McFerrin's presentation?
Keeping a retro style to sci-fi spaceships?
Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?
What information about me do stores get via my credit card?
Mortgage adviser recommends a longer term than necessary combined with overpayments
Do warforged have souls?
Am I ethically obligated to go into work on an off day if the reason is sudden?
Make it rain characters
What do I do when my TA workload is more than expected?
Does Parliament need to approve the new Brexit delay to 31 October 2019?
Is an up-to-date browser secure on an out-of-date OS?
Do working physicists consider Newtonian mechanics to be "falsified"?
Are there continuous functions who are the same in an interval but differ in at least one other point?
The 2019 Stack Overflow Developer Survey Results Are In
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 17/18, 2019 at 00:00UTC (8:00pm US/Eastern)Function which is continuous everywhere in its domain, but differentiable only at one pointAre there non-periodic continuous functions with this property?Derivative defined at some point but not continuous there?Are the two statements about continuous functions equivalent?Prove or disprove: for any two given functions, one must be upper bounding the otherIf a function is derivable in a point then there exists an open interval around the point in which the function is continuousIs there a function on a compact interval that is differentiable but not Lipschitz continuous?Are there continuous functions for which the epsilon-delta property doesn't hold?Show that two continuous functions that are surjective over the same interval intersectProve a non-constant continuous function on a compact interval must admit at least one non-local extremum
$begingroup$
You are given a function $f: mathbbRrightarrow mathbbR$. Every derivative $fracd^ndx^n(f(x)), ,n >0$ of the function is continuous.
Is there a function $g: mathbbRrightarrow mathbbR$, for which every derivative $fracd^ndx^n(g(x)), ,n >0$ is also continuous, such that:
$$forall xin[a,b]: , g(x) = f(x)land , exists x notin [a,b]: f(x) neq g(x),, a neq b$$
Thanks!
real-analysis calculus
$endgroup$
add a comment |
$begingroup$
You are given a function $f: mathbbRrightarrow mathbbR$. Every derivative $fracd^ndx^n(f(x)), ,n >0$ of the function is continuous.
Is there a function $g: mathbbRrightarrow mathbbR$, for which every derivative $fracd^ndx^n(g(x)), ,n >0$ is also continuous, such that:
$$forall xin[a,b]: , g(x) = f(x)land , exists x notin [a,b]: f(x) neq g(x),, a neq b$$
Thanks!
real-analysis calculus
$endgroup$
add a comment |
$begingroup$
You are given a function $f: mathbbRrightarrow mathbbR$. Every derivative $fracd^ndx^n(f(x)), ,n >0$ of the function is continuous.
Is there a function $g: mathbbRrightarrow mathbbR$, for which every derivative $fracd^ndx^n(g(x)), ,n >0$ is also continuous, such that:
$$forall xin[a,b]: , g(x) = f(x)land , exists x notin [a,b]: f(x) neq g(x),, a neq b$$
Thanks!
real-analysis calculus
$endgroup$
You are given a function $f: mathbbRrightarrow mathbbR$. Every derivative $fracd^ndx^n(f(x)), ,n >0$ of the function is continuous.
Is there a function $g: mathbbRrightarrow mathbbR$, for which every derivative $fracd^ndx^n(g(x)), ,n >0$ is also continuous, such that:
$$forall xin[a,b]: , g(x) = f(x)land , exists x notin [a,b]: f(x) neq g(x),, a neq b$$
Thanks!
real-analysis calculus
real-analysis calculus
edited 1 hour ago
ZeroXLR
1,528519
1,528519
asked 3 hours ago
TVSuchtyTVSuchty
325
325
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Define the real functions $f$ and $g$ thus:
$$
f(x) = begincases expBig(-frac1(x - 1)^2Big) &textif x > 1 \
0 &textif x in [-1, 1] \
expBig(-frac1(x + 1)^2Big) &textif x < -1
endcases
$$ and
$g(x) = 0$. $f$ and $g$ are both $0$ on $[-1, 1]$ but they differ in value everywhere else.
Obviously $g$ is continuously differentiable infinitely many times as it is a constant function. You can also check that $f$ is continuously differentiable infinitely many times at $x = -1$ and $x = 1$ by applying L'Hôpital's rule inductively. Checking this is a fine exercise in Real Analysis; you should try it. Here is a first taste of it:
beginalign*
lim_x to 1^+fracdf(x)dx &= limlimits_x to 1^+frac2expbig(- frac1(x - 1)^2big)(x - 1)^3 \
&= 2lim_x to 1^+fracfrac1(x - 1)^3expbig(frac1(x - 1)^2big) quadtextthis limit is of the form fracinftyinfty text so L'Hôpital applies \
&= 2 lim_x to 1^+fracfracddx(x - 1)^-3fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
&= 2 lim_x to 1^+frac-3(x - 1)^-4-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
&= 3lim_x to 1^+frac(x - 1)^-1expbig(frac1(x - 1)^2big) quadtextagain, this has the form fracinftyinfty text so L'Hôpital applies \
&= 3 lim_x to 1^+fracfracddx(x - 1)^-1fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
&= 3 lim_x to 1^+frac-(x - 1)^-2-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
&= frac32 lim_x to 1^+fracx - 1expbig(frac1(x - 1)^2big) \
&= frac32 lim_x to 1^+ Big[(x - 1)expBig(-frac1(x - 1)^2Big)Big] \
&= frac32 Big[lim_x to 1^+ (x - 1)Big] Big[lim_x to 1^+ expBig(-frac1(x - 1)^2Big)Big] = frac32 times 0 times 0 = 0
endalign* That was a long calculation but take my word: it can be repeated inductively to show that $limlimits_x to 1+fracd^nfdx^n = 0$ for all $n in mathbbZ_+!$ At all other points i.e. on $(-infty, -1) cup (-1, 1) cup (1, infty)$, $f$ is infinitely differentiable because exponentials and constant functions are infinitely differentiable.
Bonus Fact:
Both $fracd^n f(x)dx^n$ and $fracd^n g(x)dx^n$ also have the same value $0$ on $[-1, 1]$ for all positive integers $n$!
$endgroup$
$begingroup$
Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
$endgroup$
– TVSuchty
2 hours ago
1
$begingroup$
It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I am stunned. Do you know of more complex solutions?
$endgroup$
– TVSuchty
2 hours ago
$begingroup$
@TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I look forward to. Thank you for your assistance.
$endgroup$
– TVSuchty
2 hours ago
|
show 2 more comments
$begingroup$
Taylors theorem implies that if two functions are the same in one interval, they must be the same everywhere. This is because when you look at one point in the interval, the nth derivatives of both will be equal. Thus, their Taylor series centered at that point will be equal. Then you can move away from the center and find the Taylor series of both centered around another point to get more information about the function, and they will still be equal. So anywhere you look, the two functions will be equal. (This applies for all analytic functions, not so much for piecewise functions)
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185630%2fare-there-continuous-functions-who-are-the-same-in-an-interval-but-differ-in-at%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Define the real functions $f$ and $g$ thus:
$$
f(x) = begincases expBig(-frac1(x - 1)^2Big) &textif x > 1 \
0 &textif x in [-1, 1] \
expBig(-frac1(x + 1)^2Big) &textif x < -1
endcases
$$ and
$g(x) = 0$. $f$ and $g$ are both $0$ on $[-1, 1]$ but they differ in value everywhere else.
Obviously $g$ is continuously differentiable infinitely many times as it is a constant function. You can also check that $f$ is continuously differentiable infinitely many times at $x = -1$ and $x = 1$ by applying L'Hôpital's rule inductively. Checking this is a fine exercise in Real Analysis; you should try it. Here is a first taste of it:
beginalign*
lim_x to 1^+fracdf(x)dx &= limlimits_x to 1^+frac2expbig(- frac1(x - 1)^2big)(x - 1)^3 \
&= 2lim_x to 1^+fracfrac1(x - 1)^3expbig(frac1(x - 1)^2big) quadtextthis limit is of the form fracinftyinfty text so L'Hôpital applies \
&= 2 lim_x to 1^+fracfracddx(x - 1)^-3fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
&= 2 lim_x to 1^+frac-3(x - 1)^-4-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
&= 3lim_x to 1^+frac(x - 1)^-1expbig(frac1(x - 1)^2big) quadtextagain, this has the form fracinftyinfty text so L'Hôpital applies \
&= 3 lim_x to 1^+fracfracddx(x - 1)^-1fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
&= 3 lim_x to 1^+frac-(x - 1)^-2-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
&= frac32 lim_x to 1^+fracx - 1expbig(frac1(x - 1)^2big) \
&= frac32 lim_x to 1^+ Big[(x - 1)expBig(-frac1(x - 1)^2Big)Big] \
&= frac32 Big[lim_x to 1^+ (x - 1)Big] Big[lim_x to 1^+ expBig(-frac1(x - 1)^2Big)Big] = frac32 times 0 times 0 = 0
endalign* That was a long calculation but take my word: it can be repeated inductively to show that $limlimits_x to 1+fracd^nfdx^n = 0$ for all $n in mathbbZ_+!$ At all other points i.e. on $(-infty, -1) cup (-1, 1) cup (1, infty)$, $f$ is infinitely differentiable because exponentials and constant functions are infinitely differentiable.
Bonus Fact:
Both $fracd^n f(x)dx^n$ and $fracd^n g(x)dx^n$ also have the same value $0$ on $[-1, 1]$ for all positive integers $n$!
$endgroup$
$begingroup$
Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
$endgroup$
– TVSuchty
2 hours ago
1
$begingroup$
It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I am stunned. Do you know of more complex solutions?
$endgroup$
– TVSuchty
2 hours ago
$begingroup$
@TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I look forward to. Thank you for your assistance.
$endgroup$
– TVSuchty
2 hours ago
|
show 2 more comments
$begingroup$
Define the real functions $f$ and $g$ thus:
$$
f(x) = begincases expBig(-frac1(x - 1)^2Big) &textif x > 1 \
0 &textif x in [-1, 1] \
expBig(-frac1(x + 1)^2Big) &textif x < -1
endcases
$$ and
$g(x) = 0$. $f$ and $g$ are both $0$ on $[-1, 1]$ but they differ in value everywhere else.
Obviously $g$ is continuously differentiable infinitely many times as it is a constant function. You can also check that $f$ is continuously differentiable infinitely many times at $x = -1$ and $x = 1$ by applying L'Hôpital's rule inductively. Checking this is a fine exercise in Real Analysis; you should try it. Here is a first taste of it:
beginalign*
lim_x to 1^+fracdf(x)dx &= limlimits_x to 1^+frac2expbig(- frac1(x - 1)^2big)(x - 1)^3 \
&= 2lim_x to 1^+fracfrac1(x - 1)^3expbig(frac1(x - 1)^2big) quadtextthis limit is of the form fracinftyinfty text so L'Hôpital applies \
&= 2 lim_x to 1^+fracfracddx(x - 1)^-3fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
&= 2 lim_x to 1^+frac-3(x - 1)^-4-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
&= 3lim_x to 1^+frac(x - 1)^-1expbig(frac1(x - 1)^2big) quadtextagain, this has the form fracinftyinfty text so L'Hôpital applies \
&= 3 lim_x to 1^+fracfracddx(x - 1)^-1fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
&= 3 lim_x to 1^+frac-(x - 1)^-2-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
&= frac32 lim_x to 1^+fracx - 1expbig(frac1(x - 1)^2big) \
&= frac32 lim_x to 1^+ Big[(x - 1)expBig(-frac1(x - 1)^2Big)Big] \
&= frac32 Big[lim_x to 1^+ (x - 1)Big] Big[lim_x to 1^+ expBig(-frac1(x - 1)^2Big)Big] = frac32 times 0 times 0 = 0
endalign* That was a long calculation but take my word: it can be repeated inductively to show that $limlimits_x to 1+fracd^nfdx^n = 0$ for all $n in mathbbZ_+!$ At all other points i.e. on $(-infty, -1) cup (-1, 1) cup (1, infty)$, $f$ is infinitely differentiable because exponentials and constant functions are infinitely differentiable.
Bonus Fact:
Both $fracd^n f(x)dx^n$ and $fracd^n g(x)dx^n$ also have the same value $0$ on $[-1, 1]$ for all positive integers $n$!
$endgroup$
$begingroup$
Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
$endgroup$
– TVSuchty
2 hours ago
1
$begingroup$
It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I am stunned. Do you know of more complex solutions?
$endgroup$
– TVSuchty
2 hours ago
$begingroup$
@TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I look forward to. Thank you for your assistance.
$endgroup$
– TVSuchty
2 hours ago
|
show 2 more comments
$begingroup$
Define the real functions $f$ and $g$ thus:
$$
f(x) = begincases expBig(-frac1(x - 1)^2Big) &textif x > 1 \
0 &textif x in [-1, 1] \
expBig(-frac1(x + 1)^2Big) &textif x < -1
endcases
$$ and
$g(x) = 0$. $f$ and $g$ are both $0$ on $[-1, 1]$ but they differ in value everywhere else.
Obviously $g$ is continuously differentiable infinitely many times as it is a constant function. You can also check that $f$ is continuously differentiable infinitely many times at $x = -1$ and $x = 1$ by applying L'Hôpital's rule inductively. Checking this is a fine exercise in Real Analysis; you should try it. Here is a first taste of it:
beginalign*
lim_x to 1^+fracdf(x)dx &= limlimits_x to 1^+frac2expbig(- frac1(x - 1)^2big)(x - 1)^3 \
&= 2lim_x to 1^+fracfrac1(x - 1)^3expbig(frac1(x - 1)^2big) quadtextthis limit is of the form fracinftyinfty text so L'Hôpital applies \
&= 2 lim_x to 1^+fracfracddx(x - 1)^-3fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
&= 2 lim_x to 1^+frac-3(x - 1)^-4-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
&= 3lim_x to 1^+frac(x - 1)^-1expbig(frac1(x - 1)^2big) quadtextagain, this has the form fracinftyinfty text so L'Hôpital applies \
&= 3 lim_x to 1^+fracfracddx(x - 1)^-1fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
&= 3 lim_x to 1^+frac-(x - 1)^-2-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
&= frac32 lim_x to 1^+fracx - 1expbig(frac1(x - 1)^2big) \
&= frac32 lim_x to 1^+ Big[(x - 1)expBig(-frac1(x - 1)^2Big)Big] \
&= frac32 Big[lim_x to 1^+ (x - 1)Big] Big[lim_x to 1^+ expBig(-frac1(x - 1)^2Big)Big] = frac32 times 0 times 0 = 0
endalign* That was a long calculation but take my word: it can be repeated inductively to show that $limlimits_x to 1+fracd^nfdx^n = 0$ for all $n in mathbbZ_+!$ At all other points i.e. on $(-infty, -1) cup (-1, 1) cup (1, infty)$, $f$ is infinitely differentiable because exponentials and constant functions are infinitely differentiable.
Bonus Fact:
Both $fracd^n f(x)dx^n$ and $fracd^n g(x)dx^n$ also have the same value $0$ on $[-1, 1]$ for all positive integers $n$!
$endgroup$
Define the real functions $f$ and $g$ thus:
$$
f(x) = begincases expBig(-frac1(x - 1)^2Big) &textif x > 1 \
0 &textif x in [-1, 1] \
expBig(-frac1(x + 1)^2Big) &textif x < -1
endcases
$$ and
$g(x) = 0$. $f$ and $g$ are both $0$ on $[-1, 1]$ but they differ in value everywhere else.
Obviously $g$ is continuously differentiable infinitely many times as it is a constant function. You can also check that $f$ is continuously differentiable infinitely many times at $x = -1$ and $x = 1$ by applying L'Hôpital's rule inductively. Checking this is a fine exercise in Real Analysis; you should try it. Here is a first taste of it:
beginalign*
lim_x to 1^+fracdf(x)dx &= limlimits_x to 1^+frac2expbig(- frac1(x - 1)^2big)(x - 1)^3 \
&= 2lim_x to 1^+fracfrac1(x - 1)^3expbig(frac1(x - 1)^2big) quadtextthis limit is of the form fracinftyinfty text so L'Hôpital applies \
&= 2 lim_x to 1^+fracfracddx(x - 1)^-3fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
&= 2 lim_x to 1^+frac-3(x - 1)^-4-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
&= 3lim_x to 1^+frac(x - 1)^-1expbig(frac1(x - 1)^2big) quadtextagain, this has the form fracinftyinfty text so L'Hôpital applies \
&= 3 lim_x to 1^+fracfracddx(x - 1)^-1fracddxexpbig(frac1(x - 1)^2big) text by L'Hôpital \
&= 3 lim_x to 1^+frac-(x - 1)^-2-2expbig(frac1(x - 1)^2big)(x - 1)^-3 \
&= frac32 lim_x to 1^+fracx - 1expbig(frac1(x - 1)^2big) \
&= frac32 lim_x to 1^+ Big[(x - 1)expBig(-frac1(x - 1)^2Big)Big] \
&= frac32 Big[lim_x to 1^+ (x - 1)Big] Big[lim_x to 1^+ expBig(-frac1(x - 1)^2Big)Big] = frac32 times 0 times 0 = 0
endalign* That was a long calculation but take my word: it can be repeated inductively to show that $limlimits_x to 1+fracd^nfdx^n = 0$ for all $n in mathbbZ_+!$ At all other points i.e. on $(-infty, -1) cup (-1, 1) cup (1, infty)$, $f$ is infinitely differentiable because exponentials and constant functions are infinitely differentiable.
Bonus Fact:
Both $fracd^n f(x)dx^n$ and $fracd^n g(x)dx^n$ also have the same value $0$ on $[-1, 1]$ for all positive integers $n$!
edited 1 hour ago
answered 2 hours ago
ZeroXLRZeroXLR
1,528519
1,528519
$begingroup$
Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
$endgroup$
– TVSuchty
2 hours ago
1
$begingroup$
It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I am stunned. Do you know of more complex solutions?
$endgroup$
– TVSuchty
2 hours ago
$begingroup$
@TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I look forward to. Thank you for your assistance.
$endgroup$
– TVSuchty
2 hours ago
|
show 2 more comments
$begingroup$
Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
$endgroup$
– TVSuchty
2 hours ago
1
$begingroup$
It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I am stunned. Do you know of more complex solutions?
$endgroup$
– TVSuchty
2 hours ago
$begingroup$
@TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I look forward to. Thank you for your assistance.
$endgroup$
– TVSuchty
2 hours ago
$begingroup$
Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
$endgroup$
– TVSuchty
2 hours ago
$begingroup$
Well Done! Unfortunately, I am a high school student and never heard of L'Hôpitals Rule. EDIT: This function is actually amazing, never saw something like this before.
$endgroup$
– TVSuchty
2 hours ago
1
1
$begingroup$
It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
It basically says under certain conditions, $limlimits_x to a(f(x) / g(x)) = limlimits_x to a(fracd f(x)dx / fracd g(x)dx)$. en.wikipedia.org/wiki/L%27H%C3%B4pital%27s_rule
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I am stunned. Do you know of more complex solutions?
$endgroup$
– TVSuchty
2 hours ago
$begingroup$
I am stunned. Do you know of more complex solutions?
$endgroup$
– TVSuchty
2 hours ago
$begingroup$
@TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
@TVSuchty If you are asking questions like this at high school and are studying math seriously, you will very soon learn about this rule (and a whole host of other rules from Calculus). Take a re-look at that function afterwards.
$endgroup$
– ZeroXLR
2 hours ago
$begingroup$
I look forward to. Thank you for your assistance.
$endgroup$
– TVSuchty
2 hours ago
$begingroup$
I look forward to. Thank you for your assistance.
$endgroup$
– TVSuchty
2 hours ago
|
show 2 more comments
$begingroup$
Taylors theorem implies that if two functions are the same in one interval, they must be the same everywhere. This is because when you look at one point in the interval, the nth derivatives of both will be equal. Thus, their Taylor series centered at that point will be equal. Then you can move away from the center and find the Taylor series of both centered around another point to get more information about the function, and they will still be equal. So anywhere you look, the two functions will be equal. (This applies for all analytic functions, not so much for piecewise functions)
$endgroup$
add a comment |
$begingroup$
Taylors theorem implies that if two functions are the same in one interval, they must be the same everywhere. This is because when you look at one point in the interval, the nth derivatives of both will be equal. Thus, their Taylor series centered at that point will be equal. Then you can move away from the center and find the Taylor series of both centered around another point to get more information about the function, and they will still be equal. So anywhere you look, the two functions will be equal. (This applies for all analytic functions, not so much for piecewise functions)
$endgroup$
add a comment |
$begingroup$
Taylors theorem implies that if two functions are the same in one interval, they must be the same everywhere. This is because when you look at one point in the interval, the nth derivatives of both will be equal. Thus, their Taylor series centered at that point will be equal. Then you can move away from the center and find the Taylor series of both centered around another point to get more information about the function, and they will still be equal. So anywhere you look, the two functions will be equal. (This applies for all analytic functions, not so much for piecewise functions)
$endgroup$
Taylors theorem implies that if two functions are the same in one interval, they must be the same everywhere. This is because when you look at one point in the interval, the nth derivatives of both will be equal. Thus, their Taylor series centered at that point will be equal. Then you can move away from the center and find the Taylor series of both centered around another point to get more information about the function, and they will still be equal. So anywhere you look, the two functions will be equal. (This applies for all analytic functions, not so much for piecewise functions)
answered 52 mins ago
uhhhhidkuhhhhidk
1266
1266
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3185630%2fare-there-continuous-functions-who-are-the-same-in-an-interval-but-differ-in-at%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown