Betweenness centrality formulaFormalization of the shortest path algorithm to a linear programShortest path that passes through specific node(s)Betweenness centrality and least average shortest pathSort graph nodes by densityFind hamilton cycle in a directed graph reduced to sat problemWhat does a ball of center v and radius r with at most r hops away mean?Polynomial LP-based algorithm for cost minimization of DAG weights modificationDjikstra's shortest path vs Brandes algorithm for betweeness centralityFind all the cumulative sums in a DAGMinimum path cover— Disjointed paths with minimum total number of edges

Is Diceware more secure than a long passphrase?

Rivers without rain

Dynamic SOQL query relationship with field visibility for Users

a sore throat vs a strep throat vs strep throat

Checks user level and limit the data before saving it to mongoDB

Minor Revision with suggestion of an alternative proof by reviewer

Is the claim "Employers won't employ people with no 'social media presence'" realistic?

Can someone publish a story that happened to you?

What is causing the white spot to appear in some of my pictures

Can an Area of Effect spell cast outside a Prismatic Wall extend inside it?

Was there a shared-world project before "Thieves World"?

"The cow" OR "a cow" OR "cows" in this context

Multiple options vs single option UI

Can SQL Server create collisions in system generated constraint names?

Initiative: Do I lose my attack/action if my target moves or dies before my turn in combat?

Classification of surfaces

Why must Chinese maps be obfuscated?

Why was the Spitfire's elliptical wing almost uncopied by other aircraft of World War 2?

Aligning equation numbers vertically

A ​Note ​on ​N!

How to pronounce 'c++' in Spanish

What term is being referred to with "reflected-sound-of-underground-spirits"?

What is the philosophical significance of speech acts/implicature?

Is there any official lore on the Far Realm?



Betweenness centrality formula


Formalization of the shortest path algorithm to a linear programShortest path that passes through specific node(s)Betweenness centrality and least average shortest pathSort graph nodes by densityFind hamilton cycle in a directed graph reduced to sat problemWhat does a ball of center v and radius r with at most r hops away mean?Polynomial LP-based algorithm for cost minimization of DAG weights modificationDjikstra's shortest path vs Brandes algorithm for betweeness centralityFind all the cumulative sums in a DAGMinimum path cover— Disjointed paths with minimum total number of edges













3












$begingroup$



Betweenness centrality is defined as the number of shortest paths that go through a node in the graph.The formula is:



$$sum_s neq v neq t fracsigma_st(v)sigma_st$$



Where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.




However it doesn't seem to me that the formula calculates what is defined. Why do we divide by the total number of shortest paths between $s$ and $t$ each time? Shouldn't we just divide by $2$ to compensate the fact that $s$ and $t$ will appear twice in different orders?










share|cite









$endgroup$
















    3












    $begingroup$



    Betweenness centrality is defined as the number of shortest paths that go through a node in the graph.The formula is:



    $$sum_s neq v neq t fracsigma_st(v)sigma_st$$



    Where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.




    However it doesn't seem to me that the formula calculates what is defined. Why do we divide by the total number of shortest paths between $s$ and $t$ each time? Shouldn't we just divide by $2$ to compensate the fact that $s$ and $t$ will appear twice in different orders?










    share|cite









    $endgroup$














      3












      3








      3





      $begingroup$



      Betweenness centrality is defined as the number of shortest paths that go through a node in the graph.The formula is:



      $$sum_s neq v neq t fracsigma_st(v)sigma_st$$



      Where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.




      However it doesn't seem to me that the formula calculates what is defined. Why do we divide by the total number of shortest paths between $s$ and $t$ each time? Shouldn't we just divide by $2$ to compensate the fact that $s$ and $t$ will appear twice in different orders?










      share|cite









      $endgroup$





      Betweenness centrality is defined as the number of shortest paths that go through a node in the graph.The formula is:



      $$sum_s neq v neq t fracsigma_st(v)sigma_st$$



      Where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$.




      However it doesn't seem to me that the formula calculates what is defined. Why do we divide by the total number of shortest paths between $s$ and $t$ each time? Shouldn't we just divide by $2$ to compensate the fact that $s$ and $t$ will appear twice in different orders?







      graph-theory






      share|cite













      share|cite











      share|cite




      share|cite










      asked 5 hours ago









      ElooEloo

      515




      515




















          2 Answers
          2






          active

          oldest

          votes


















          2












          $begingroup$


          However it doesn't seem to me that the formula calculates what is defined.




          The formula is right. The betweenness centrality is a value in an interval $[0, ldots, 1]$. Thus, if the betweenness centrality of node $v$ is equal to $1$, then all shortest paths between two nodes of this graph pass through $v$. I will explain the correctness of this summation below.





          Why do we divide by the total number of shortest paths between s and t each time?




          You are developing a summation of the percentages. This is needed to ensure that this sum will never exceed $1$. Suppose that you have $m$ different $s$-$t$ pairs of vertices in your graph. Thus, $sigma_st = m$ and your summation goes through all $m$ $s$-$t$ pairs.

          One can note that the term $sigma_st(v)$ on this equation is binary (the shortest $s$-$t$ path passes through $v$ or not). Thus, if all $s$-$t$ paths go through $v$, you will have $m cdot frac1m = 1$.





          Shouldn't we just divide by 2 to compensate the fact that s and t will appear twice in different orders?




          Indirectly, you're right. This formula measures the percentage of the shortest $s$-$t$ paths that pass through node $v$. In fact, a simple optimization of this algorithm for undirected graphs is to consider only $s$-$t$ paths where $s < t$. However, you can't divide it by $2$.




          Curiosity: The only graph topology who has a node with betweenness centrality equal to $1$ is a star graph, like the examples shown in the figure below.



          Examples of star graphs






          share|cite|improve this answer











          $endgroup$












          • $begingroup$
            It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
            $endgroup$
            – Apass.Jack
            2 hours ago



















          2












          $begingroup$

          Suppose we want to quantify the extent to which $v$ is between $s$ and $t$. There could be a few ways.



          One way to describe that extent is the probability of passing through $v$ if we want to reach from $s$ to $t$ by a randomly-selected shortest path. Assuming each shortest path is selected with equal probability, we will get $fracsigma_st(v)sigma_st$, where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$. In particular, the extent of $v$ between $s$ and $t$ is 0 if none of the shortest paths from $s$ to $v$ goes through $v$ while it is 1 if all of them must go through $v$.



          Assigning the same weight to each pair of starting node and destination node, we can see that $sum_s neq v neq t fracsigma_st(v)sigma_st$ measure the extent in which $v$ is the center of betweenness.



          enter image description hereThe graph is created by https://graphonline.ru/



          If you use $fracsigma_st(v)2$ to quantify the extent to which $v$ is between $s$ and $t$, there is no problem if you just care about $v$ considering $s$ and $t$ as fixed. However, take a look at the above graph.



          • How much is $v_3$ between $v_0$ and $v_4$? There are 3 shortest paths from $v_0$ to $v_4$, 2 of which pass through $v_3$. We get $fracsigma_v_0v_4(V_3)2 = 2/2=1$.

          • How much is $v_5$ between $v_0$ and $v_6$? There is only 1 shortest path from $v_0$ to $v_6$, which passes through $v_5$. We get $fracsigma_v_0v_6(v_5)2 = 1/2=0.5$.

          Since $1>0.5$, we would like to conclude that $v_3$ is more between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. However, we can go to $v_4$ without passing through $v_3$ while we must pass through $v_5$ to reach $v_6$ by a shortest path. So $v_3$ should be less between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. This simple example shows that it does not make much sense to divide by 2 or, in fact, any constant if we want to normalize the measurement.





          Exercises



          Exercise 1. What are the centers of the graph above in terms of the betweenness centrality? (Note there could be multiple centers.)



          Exercise 2. Suppose we define the betweenness centrality of $v$ as $sum_s neq v neq t fractau_st(v)tau_st$, where $tau_st$ is the total number of distinct edges in the union of all shortest paths from $s$ to $t$ and $tau_st(v)$ is the number of those edges that are also incident to $v$. Would you consider the above definition a better definition of betweenness centrality?



          Exercise 3. Suppose we define the betweenness centrality of $v$ as $sum_s neq v neq t fracrho_st(v)rho_st$, where $rho_st$ is the total number of distinct edges in the union of all shortest paths from $s$ to $t$ and $rho_st(v)$ is the number of distinct edges that are on a shortest path from $s$ to $t$ that passes through $v$. Would you consider the above definition a better definition of betweenness centrality?






          share|cite|improve this answer











          $endgroup$













            Your Answer








            StackExchange.ready(function()
            var channelOptions =
            tags: "".split(" "),
            id: "419"
            ;
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function()
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled)
            StackExchange.using("snippets", function()
            createEditor();
            );

            else
            createEditor();

            );

            function createEditor()
            StackExchange.prepareEditor(
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: false,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: null,
            bindNavPrevention: true,
            postfix: "",
            imageUploader:
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            ,
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            );



            );













            draft saved

            draft discarded


















            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108582%2fbetweenness-centrality-formula%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown

























            2 Answers
            2






            active

            oldest

            votes








            2 Answers
            2






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            2












            $begingroup$


            However it doesn't seem to me that the formula calculates what is defined.




            The formula is right. The betweenness centrality is a value in an interval $[0, ldots, 1]$. Thus, if the betweenness centrality of node $v$ is equal to $1$, then all shortest paths between two nodes of this graph pass through $v$. I will explain the correctness of this summation below.





            Why do we divide by the total number of shortest paths between s and t each time?




            You are developing a summation of the percentages. This is needed to ensure that this sum will never exceed $1$. Suppose that you have $m$ different $s$-$t$ pairs of vertices in your graph. Thus, $sigma_st = m$ and your summation goes through all $m$ $s$-$t$ pairs.

            One can note that the term $sigma_st(v)$ on this equation is binary (the shortest $s$-$t$ path passes through $v$ or not). Thus, if all $s$-$t$ paths go through $v$, you will have $m cdot frac1m = 1$.





            Shouldn't we just divide by 2 to compensate the fact that s and t will appear twice in different orders?




            Indirectly, you're right. This formula measures the percentage of the shortest $s$-$t$ paths that pass through node $v$. In fact, a simple optimization of this algorithm for undirected graphs is to consider only $s$-$t$ paths where $s < t$. However, you can't divide it by $2$.




            Curiosity: The only graph topology who has a node with betweenness centrality equal to $1$ is a star graph, like the examples shown in the figure below.



            Examples of star graphs






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
              $endgroup$
              – Apass.Jack
              2 hours ago
















            2












            $begingroup$


            However it doesn't seem to me that the formula calculates what is defined.




            The formula is right. The betweenness centrality is a value in an interval $[0, ldots, 1]$. Thus, if the betweenness centrality of node $v$ is equal to $1$, then all shortest paths between two nodes of this graph pass through $v$. I will explain the correctness of this summation below.





            Why do we divide by the total number of shortest paths between s and t each time?




            You are developing a summation of the percentages. This is needed to ensure that this sum will never exceed $1$. Suppose that you have $m$ different $s$-$t$ pairs of vertices in your graph. Thus, $sigma_st = m$ and your summation goes through all $m$ $s$-$t$ pairs.

            One can note that the term $sigma_st(v)$ on this equation is binary (the shortest $s$-$t$ path passes through $v$ or not). Thus, if all $s$-$t$ paths go through $v$, you will have $m cdot frac1m = 1$.





            Shouldn't we just divide by 2 to compensate the fact that s and t will appear twice in different orders?




            Indirectly, you're right. This formula measures the percentage of the shortest $s$-$t$ paths that pass through node $v$. In fact, a simple optimization of this algorithm for undirected graphs is to consider only $s$-$t$ paths where $s < t$. However, you can't divide it by $2$.




            Curiosity: The only graph topology who has a node with betweenness centrality equal to $1$ is a star graph, like the examples shown in the figure below.



            Examples of star graphs






            share|cite|improve this answer











            $endgroup$












            • $begingroup$
              It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
              $endgroup$
              – Apass.Jack
              2 hours ago














            2












            2








            2





            $begingroup$


            However it doesn't seem to me that the formula calculates what is defined.




            The formula is right. The betweenness centrality is a value in an interval $[0, ldots, 1]$. Thus, if the betweenness centrality of node $v$ is equal to $1$, then all shortest paths between two nodes of this graph pass through $v$. I will explain the correctness of this summation below.





            Why do we divide by the total number of shortest paths between s and t each time?




            You are developing a summation of the percentages. This is needed to ensure that this sum will never exceed $1$. Suppose that you have $m$ different $s$-$t$ pairs of vertices in your graph. Thus, $sigma_st = m$ and your summation goes through all $m$ $s$-$t$ pairs.

            One can note that the term $sigma_st(v)$ on this equation is binary (the shortest $s$-$t$ path passes through $v$ or not). Thus, if all $s$-$t$ paths go through $v$, you will have $m cdot frac1m = 1$.





            Shouldn't we just divide by 2 to compensate the fact that s and t will appear twice in different orders?




            Indirectly, you're right. This formula measures the percentage of the shortest $s$-$t$ paths that pass through node $v$. In fact, a simple optimization of this algorithm for undirected graphs is to consider only $s$-$t$ paths where $s < t$. However, you can't divide it by $2$.




            Curiosity: The only graph topology who has a node with betweenness centrality equal to $1$ is a star graph, like the examples shown in the figure below.



            Examples of star graphs






            share|cite|improve this answer











            $endgroup$




            However it doesn't seem to me that the formula calculates what is defined.




            The formula is right. The betweenness centrality is a value in an interval $[0, ldots, 1]$. Thus, if the betweenness centrality of node $v$ is equal to $1$, then all shortest paths between two nodes of this graph pass through $v$. I will explain the correctness of this summation below.





            Why do we divide by the total number of shortest paths between s and t each time?




            You are developing a summation of the percentages. This is needed to ensure that this sum will never exceed $1$. Suppose that you have $m$ different $s$-$t$ pairs of vertices in your graph. Thus, $sigma_st = m$ and your summation goes through all $m$ $s$-$t$ pairs.

            One can note that the term $sigma_st(v)$ on this equation is binary (the shortest $s$-$t$ path passes through $v$ or not). Thus, if all $s$-$t$ paths go through $v$, you will have $m cdot frac1m = 1$.





            Shouldn't we just divide by 2 to compensate the fact that s and t will appear twice in different orders?




            Indirectly, you're right. This formula measures the percentage of the shortest $s$-$t$ paths that pass through node $v$. In fact, a simple optimization of this algorithm for undirected graphs is to consider only $s$-$t$ paths where $s < t$. However, you can't divide it by $2$.




            Curiosity: The only graph topology who has a node with betweenness centrality equal to $1$ is a star graph, like the examples shown in the figure below.



            Examples of star graphs







            share|cite|improve this answer














            share|cite|improve this answer



            share|cite|improve this answer








            edited 3 hours ago

























            answered 3 hours ago









            Iago CarvalhoIago Carvalho

            17017




            17017











            • $begingroup$
              It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
              $endgroup$
              – Apass.Jack
              2 hours ago

















            • $begingroup$
              It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
              $endgroup$
              – Apass.Jack
              2 hours ago
















            $begingroup$
            It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
            $endgroup$
            – Apass.Jack
            2 hours ago





            $begingroup$
            It looks like you confuse betweenness centrality of a node in a graph with the betweenness of a node between two nodes. The former might be greater than 1 before normalization.
            $endgroup$
            – Apass.Jack
            2 hours ago












            2












            $begingroup$

            Suppose we want to quantify the extent to which $v$ is between $s$ and $t$. There could be a few ways.



            One way to describe that extent is the probability of passing through $v$ if we want to reach from $s$ to $t$ by a randomly-selected shortest path. Assuming each shortest path is selected with equal probability, we will get $fracsigma_st(v)sigma_st$, where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$. In particular, the extent of $v$ between $s$ and $t$ is 0 if none of the shortest paths from $s$ to $v$ goes through $v$ while it is 1 if all of them must go through $v$.



            Assigning the same weight to each pair of starting node and destination node, we can see that $sum_s neq v neq t fracsigma_st(v)sigma_st$ measure the extent in which $v$ is the center of betweenness.



            enter image description hereThe graph is created by https://graphonline.ru/



            If you use $fracsigma_st(v)2$ to quantify the extent to which $v$ is between $s$ and $t$, there is no problem if you just care about $v$ considering $s$ and $t$ as fixed. However, take a look at the above graph.



            • How much is $v_3$ between $v_0$ and $v_4$? There are 3 shortest paths from $v_0$ to $v_4$, 2 of which pass through $v_3$. We get $fracsigma_v_0v_4(V_3)2 = 2/2=1$.

            • How much is $v_5$ between $v_0$ and $v_6$? There is only 1 shortest path from $v_0$ to $v_6$, which passes through $v_5$. We get $fracsigma_v_0v_6(v_5)2 = 1/2=0.5$.

            Since $1>0.5$, we would like to conclude that $v_3$ is more between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. However, we can go to $v_4$ without passing through $v_3$ while we must pass through $v_5$ to reach $v_6$ by a shortest path. So $v_3$ should be less between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. This simple example shows that it does not make much sense to divide by 2 or, in fact, any constant if we want to normalize the measurement.





            Exercises



            Exercise 1. What are the centers of the graph above in terms of the betweenness centrality? (Note there could be multiple centers.)



            Exercise 2. Suppose we define the betweenness centrality of $v$ as $sum_s neq v neq t fractau_st(v)tau_st$, where $tau_st$ is the total number of distinct edges in the union of all shortest paths from $s$ to $t$ and $tau_st(v)$ is the number of those edges that are also incident to $v$. Would you consider the above definition a better definition of betweenness centrality?



            Exercise 3. Suppose we define the betweenness centrality of $v$ as $sum_s neq v neq t fracrho_st(v)rho_st$, where $rho_st$ is the total number of distinct edges in the union of all shortest paths from $s$ to $t$ and $rho_st(v)$ is the number of distinct edges that are on a shortest path from $s$ to $t$ that passes through $v$. Would you consider the above definition a better definition of betweenness centrality?






            share|cite|improve this answer











            $endgroup$

















              2












              $begingroup$

              Suppose we want to quantify the extent to which $v$ is between $s$ and $t$. There could be a few ways.



              One way to describe that extent is the probability of passing through $v$ if we want to reach from $s$ to $t$ by a randomly-selected shortest path. Assuming each shortest path is selected with equal probability, we will get $fracsigma_st(v)sigma_st$, where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$. In particular, the extent of $v$ between $s$ and $t$ is 0 if none of the shortest paths from $s$ to $v$ goes through $v$ while it is 1 if all of them must go through $v$.



              Assigning the same weight to each pair of starting node and destination node, we can see that $sum_s neq v neq t fracsigma_st(v)sigma_st$ measure the extent in which $v$ is the center of betweenness.



              enter image description hereThe graph is created by https://graphonline.ru/



              If you use $fracsigma_st(v)2$ to quantify the extent to which $v$ is between $s$ and $t$, there is no problem if you just care about $v$ considering $s$ and $t$ as fixed. However, take a look at the above graph.



              • How much is $v_3$ between $v_0$ and $v_4$? There are 3 shortest paths from $v_0$ to $v_4$, 2 of which pass through $v_3$. We get $fracsigma_v_0v_4(V_3)2 = 2/2=1$.

              • How much is $v_5$ between $v_0$ and $v_6$? There is only 1 shortest path from $v_0$ to $v_6$, which passes through $v_5$. We get $fracsigma_v_0v_6(v_5)2 = 1/2=0.5$.

              Since $1>0.5$, we would like to conclude that $v_3$ is more between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. However, we can go to $v_4$ without passing through $v_3$ while we must pass through $v_5$ to reach $v_6$ by a shortest path. So $v_3$ should be less between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. This simple example shows that it does not make much sense to divide by 2 or, in fact, any constant if we want to normalize the measurement.





              Exercises



              Exercise 1. What are the centers of the graph above in terms of the betweenness centrality? (Note there could be multiple centers.)



              Exercise 2. Suppose we define the betweenness centrality of $v$ as $sum_s neq v neq t fractau_st(v)tau_st$, where $tau_st$ is the total number of distinct edges in the union of all shortest paths from $s$ to $t$ and $tau_st(v)$ is the number of those edges that are also incident to $v$. Would you consider the above definition a better definition of betweenness centrality?



              Exercise 3. Suppose we define the betweenness centrality of $v$ as $sum_s neq v neq t fracrho_st(v)rho_st$, where $rho_st$ is the total number of distinct edges in the union of all shortest paths from $s$ to $t$ and $rho_st(v)$ is the number of distinct edges that are on a shortest path from $s$ to $t$ that passes through $v$. Would you consider the above definition a better definition of betweenness centrality?






              share|cite|improve this answer











              $endgroup$















                2












                2








                2





                $begingroup$

                Suppose we want to quantify the extent to which $v$ is between $s$ and $t$. There could be a few ways.



                One way to describe that extent is the probability of passing through $v$ if we want to reach from $s$ to $t$ by a randomly-selected shortest path. Assuming each shortest path is selected with equal probability, we will get $fracsigma_st(v)sigma_st$, where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$. In particular, the extent of $v$ between $s$ and $t$ is 0 if none of the shortest paths from $s$ to $v$ goes through $v$ while it is 1 if all of them must go through $v$.



                Assigning the same weight to each pair of starting node and destination node, we can see that $sum_s neq v neq t fracsigma_st(v)sigma_st$ measure the extent in which $v$ is the center of betweenness.



                enter image description hereThe graph is created by https://graphonline.ru/



                If you use $fracsigma_st(v)2$ to quantify the extent to which $v$ is between $s$ and $t$, there is no problem if you just care about $v$ considering $s$ and $t$ as fixed. However, take a look at the above graph.



                • How much is $v_3$ between $v_0$ and $v_4$? There are 3 shortest paths from $v_0$ to $v_4$, 2 of which pass through $v_3$. We get $fracsigma_v_0v_4(V_3)2 = 2/2=1$.

                • How much is $v_5$ between $v_0$ and $v_6$? There is only 1 shortest path from $v_0$ to $v_6$, which passes through $v_5$. We get $fracsigma_v_0v_6(v_5)2 = 1/2=0.5$.

                Since $1>0.5$, we would like to conclude that $v_3$ is more between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. However, we can go to $v_4$ without passing through $v_3$ while we must pass through $v_5$ to reach $v_6$ by a shortest path. So $v_3$ should be less between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. This simple example shows that it does not make much sense to divide by 2 or, in fact, any constant if we want to normalize the measurement.





                Exercises



                Exercise 1. What are the centers of the graph above in terms of the betweenness centrality? (Note there could be multiple centers.)



                Exercise 2. Suppose we define the betweenness centrality of $v$ as $sum_s neq v neq t fractau_st(v)tau_st$, where $tau_st$ is the total number of distinct edges in the union of all shortest paths from $s$ to $t$ and $tau_st(v)$ is the number of those edges that are also incident to $v$. Would you consider the above definition a better definition of betweenness centrality?



                Exercise 3. Suppose we define the betweenness centrality of $v$ as $sum_s neq v neq t fracrho_st(v)rho_st$, where $rho_st$ is the total number of distinct edges in the union of all shortest paths from $s$ to $t$ and $rho_st(v)$ is the number of distinct edges that are on a shortest path from $s$ to $t$ that passes through $v$. Would you consider the above definition a better definition of betweenness centrality?






                share|cite|improve this answer











                $endgroup$



                Suppose we want to quantify the extent to which $v$ is between $s$ and $t$. There could be a few ways.



                One way to describe that extent is the probability of passing through $v$ if we want to reach from $s$ to $t$ by a randomly-selected shortest path. Assuming each shortest path is selected with equal probability, we will get $fracsigma_st(v)sigma_st$, where $sigma_st$ is the total number of shortest paths from node $s$ to node $t$ and $sigma _st(v)$ is the number of those paths that pass through $v$. In particular, the extent of $v$ between $s$ and $t$ is 0 if none of the shortest paths from $s$ to $v$ goes through $v$ while it is 1 if all of them must go through $v$.



                Assigning the same weight to each pair of starting node and destination node, we can see that $sum_s neq v neq t fracsigma_st(v)sigma_st$ measure the extent in which $v$ is the center of betweenness.



                enter image description hereThe graph is created by https://graphonline.ru/



                If you use $fracsigma_st(v)2$ to quantify the extent to which $v$ is between $s$ and $t$, there is no problem if you just care about $v$ considering $s$ and $t$ as fixed. However, take a look at the above graph.



                • How much is $v_3$ between $v_0$ and $v_4$? There are 3 shortest paths from $v_0$ to $v_4$, 2 of which pass through $v_3$. We get $fracsigma_v_0v_4(V_3)2 = 2/2=1$.

                • How much is $v_5$ between $v_0$ and $v_6$? There is only 1 shortest path from $v_0$ to $v_6$, which passes through $v_5$. We get $fracsigma_v_0v_6(v_5)2 = 1/2=0.5$.

                Since $1>0.5$, we would like to conclude that $v_3$ is more between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. However, we can go to $v_4$ without passing through $v_3$ while we must pass through $v_5$ to reach $v_6$ by a shortest path. So $v_3$ should be less between $v_0$ and $v_4$ than $v_5$ is between $v_0$ and $v_6$. This simple example shows that it does not make much sense to divide by 2 or, in fact, any constant if we want to normalize the measurement.





                Exercises



                Exercise 1. What are the centers of the graph above in terms of the betweenness centrality? (Note there could be multiple centers.)



                Exercise 2. Suppose we define the betweenness centrality of $v$ as $sum_s neq v neq t fractau_st(v)tau_st$, where $tau_st$ is the total number of distinct edges in the union of all shortest paths from $s$ to $t$ and $tau_st(v)$ is the number of those edges that are also incident to $v$. Would you consider the above definition a better definition of betweenness centrality?



                Exercise 3. Suppose we define the betweenness centrality of $v$ as $sum_s neq v neq t fracrho_st(v)rho_st$, where $rho_st$ is the total number of distinct edges in the union of all shortest paths from $s$ to $t$ and $rho_st(v)$ is the number of distinct edges that are on a shortest path from $s$ to $t$ that passes through $v$. Would you consider the above definition a better definition of betweenness centrality?







                share|cite|improve this answer














                share|cite|improve this answer



                share|cite|improve this answer








                edited 1 hour ago

























                answered 2 hours ago









                Apass.JackApass.Jack

                14.6k1940




                14.6k1940



























                    draft saved

                    draft discarded
















































                    Thanks for contributing an answer to Computer Science Stack Exchange!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid


                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.

                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function ()
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fcs.stackexchange.com%2fquestions%2f108582%2fbetweenness-centrality-formula%23new-answer', 'question_page');

                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    Log på Navigationsmenu

                    Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                    Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5