Computing the expectation of the number of balls in a box The 2019 Stack Overflow Developer Survey Results Are InThere is two boxes with one with 8 balls and one with 4 ballsdrawing balls from box without replacemntRandom distribution of colored balls into boxes.Optimal Number of White BallsCompute possible outcomes when get balls from a boxPoisson Approximation Problem involving putting balls into boxesCompute expected received balls from boxesput n balls into n boxesA question of probability regarding expectation and variance of a random variable.Distributing 5 distinct balls into 3 distinct boxes
How to support a colleague who finds meetings extremely tiring?
A word that means fill it to the required quantity
How to notate time signature switching consistently every measure
How do PCB vias affect signal quality?
Correct punctuation for showing a character's confusion
Is it possible for absolutely everyone to attain enlightenment?
Why isn't the circumferential light around the M87 black hole's event horizon symmetric?
"as much details as you can remember"
Worn-tile Scrabble
How to type a long/em dash `—`
If I can cast sorceries at instant speed, can I use sorcery-speed activated abilities at instant speed?
Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?
ODD NUMBER in Cognitive Linguistics of WILLIAM CROFT and D. ALAN CRUSE
How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?
How to display lines in a file like ls displays files in a directory?
Falsification in Math vs Science
APIPA and LAN Broadcast Domain
Why didn't the Event Horizon Telescope team mention Sagittarius A*?
Is it safe to harvest rainwater that fell on solar panels?
What is the meaning of Triage in Cybersec world?
Is it ok to offer lower paid work as a trial period before negotiating for a full-time job?
Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?
Is Cinnamon a desktop environment or a window manager? (Or both?)
Why was M87 targeted for the Event Horizon Telescope instead of Sagittarius A*?
Computing the expectation of the number of balls in a box
The 2019 Stack Overflow Developer Survey Results Are InThere is two boxes with one with 8 balls and one with 4 ballsdrawing balls from box without replacemntRandom distribution of colored balls into boxes.Optimal Number of White BallsCompute possible outcomes when get balls from a boxPoisson Approximation Problem involving putting balls into boxesCompute expected received balls from boxesput n balls into n boxesA question of probability regarding expectation and variance of a random variable.Distributing 5 distinct balls into 3 distinct boxes
$begingroup$
- There are $r$ boxes and $n$ balls.
- Each ball is placed in a box with equal probability, independently of the other balls.
- Let $X_i$ be the number of balls in box $i$,
$1 leq i leq r$. - Compute $mathbbEleft[X_iright], mathbbEleft[X_iX_jright]$.
I am preparing for an exam, and I have no idea how to approach this problem. Can someone push me in the right direction ?.
probability-theory
$endgroup$
add a comment |
$begingroup$
- There are $r$ boxes and $n$ balls.
- Each ball is placed in a box with equal probability, independently of the other balls.
- Let $X_i$ be the number of balls in box $i$,
$1 leq i leq r$. - Compute $mathbbEleft[X_iright], mathbbEleft[X_iX_jright]$.
I am preparing for an exam, and I have no idea how to approach this problem. Can someone push me in the right direction ?.
probability-theory
$endgroup$
$begingroup$
Are there any restrictions on $j$?
$endgroup$
– Sean Lee
5 hours ago
$begingroup$
@SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
$endgroup$
– 631
5 hours ago
$begingroup$
Computationally, the answer to the second part appears to be $fracn^2r^2$
$endgroup$
– Sean Lee
4 hours ago
add a comment |
$begingroup$
- There are $r$ boxes and $n$ balls.
- Each ball is placed in a box with equal probability, independently of the other balls.
- Let $X_i$ be the number of balls in box $i$,
$1 leq i leq r$. - Compute $mathbbEleft[X_iright], mathbbEleft[X_iX_jright]$.
I am preparing for an exam, and I have no idea how to approach this problem. Can someone push me in the right direction ?.
probability-theory
$endgroup$
- There are $r$ boxes and $n$ balls.
- Each ball is placed in a box with equal probability, independently of the other balls.
- Let $X_i$ be the number of balls in box $i$,
$1 leq i leq r$. - Compute $mathbbEleft[X_iright], mathbbEleft[X_iX_jright]$.
I am preparing for an exam, and I have no idea how to approach this problem. Can someone push me in the right direction ?.
probability-theory
probability-theory
edited 5 hours ago
Felix Marin
68.9k7110147
68.9k7110147
asked 5 hours ago
631631
585
585
$begingroup$
Are there any restrictions on $j$?
$endgroup$
– Sean Lee
5 hours ago
$begingroup$
@SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
$endgroup$
– 631
5 hours ago
$begingroup$
Computationally, the answer to the second part appears to be $fracn^2r^2$
$endgroup$
– Sean Lee
4 hours ago
add a comment |
$begingroup$
Are there any restrictions on $j$?
$endgroup$
– Sean Lee
5 hours ago
$begingroup$
@SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
$endgroup$
– 631
5 hours ago
$begingroup$
Computationally, the answer to the second part appears to be $fracn^2r^2$
$endgroup$
– Sean Lee
4 hours ago
$begingroup$
Are there any restrictions on $j$?
$endgroup$
– Sean Lee
5 hours ago
$begingroup$
Are there any restrictions on $j$?
$endgroup$
– Sean Lee
5 hours ago
$begingroup$
@SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
$endgroup$
– 631
5 hours ago
$begingroup$
@SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
$endgroup$
– 631
5 hours ago
$begingroup$
Computationally, the answer to the second part appears to be $fracn^2r^2$
$endgroup$
– Sean Lee
4 hours ago
$begingroup$
Computationally, the answer to the second part appears to be $fracn^2r^2$
$endgroup$
– Sean Lee
4 hours ago
add a comment |
3 Answers
3
active
oldest
votes
$begingroup$
Since there are $r$ boxes and $n$ balls, and each ball is placed in a box with equal probability, we have:
$$ mathbbE[X_i] = fracnr $$
Now, we would like to know what is $mathbbE[X_i X_j] $.
We begin by making the following observation:
$$X_i = n - sum_jneq iX_j $$
Which gives us:
$$ X_isum_jneq iX_j = nX_i - X_i^2$$
Now, fix $i$ (we can do this because of the symmetry in the question), and thus we have:
beginalignmathbbE[X_i X_j] &= frac1rBig(mathbbE[X_i sum_jneq i X_j] + mathbbE[X_i^2]Big) \
&= frac1r mathbbE[nX_i] \
&= fracn^2r^2
endalign
$endgroup$
1
$begingroup$
If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
$endgroup$
– Daniel Schepler
25 mins ago
$begingroup$
Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
$endgroup$
– Sean Lee
11 mins ago
add a comment |
$begingroup$
For the first part, you can use linearity of expectation to compute $mathbbE[X_i]$.
Specifically, you know that for a fixed box, the probability of putting a ball in it
is $frac1r$. Let
$$
Y_k^(i) = begincases
1 &, text if ball $k$ was placed in box $i$ \
0 &, text otherwise
endcases,
$$
which satisfies $mathbbE[Y_k^(i)] = mathbbP(Y_k^(i) = 1) = frac1r.$
Then you can write
$$
X_i = sum_j=1^n Y_j^(i) Rightarrow mathbbEX_i = sum_j=1^n frac1r = fracnr.
$$
$endgroup$
add a comment |
$begingroup$
Think of placing the ball in box "$i$" as success and not placing it as a failure.
This situation can be represented using the Hypergeometric Distribution.
$$
P(X=k) = fracK choose k N- Kchoose n - kN choose n.
$$
$N$ is the population size (number of boxes $r$)
$K$ is the number of success states in the population (just $1$ because the success is defined as placing the ball in box "$i$".)
$n$ is the number of draws (the number of balls $n$).
$k$ is the number of observed successes (the number of balls in box "$i$").
The expectation of the Hypergeometric Distribution is $nfracKN$, hence the mean of your variable
$$E[X_i]=nfrac1r=fracnr$$
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184022%2fcomputing-the-expectation-of-the-number-of-balls-in-a-box%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Since there are $r$ boxes and $n$ balls, and each ball is placed in a box with equal probability, we have:
$$ mathbbE[X_i] = fracnr $$
Now, we would like to know what is $mathbbE[X_i X_j] $.
We begin by making the following observation:
$$X_i = n - sum_jneq iX_j $$
Which gives us:
$$ X_isum_jneq iX_j = nX_i - X_i^2$$
Now, fix $i$ (we can do this because of the symmetry in the question), and thus we have:
beginalignmathbbE[X_i X_j] &= frac1rBig(mathbbE[X_i sum_jneq i X_j] + mathbbE[X_i^2]Big) \
&= frac1r mathbbE[nX_i] \
&= fracn^2r^2
endalign
$endgroup$
1
$begingroup$
If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
$endgroup$
– Daniel Schepler
25 mins ago
$begingroup$
Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
$endgroup$
– Sean Lee
11 mins ago
add a comment |
$begingroup$
Since there are $r$ boxes and $n$ balls, and each ball is placed in a box with equal probability, we have:
$$ mathbbE[X_i] = fracnr $$
Now, we would like to know what is $mathbbE[X_i X_j] $.
We begin by making the following observation:
$$X_i = n - sum_jneq iX_j $$
Which gives us:
$$ X_isum_jneq iX_j = nX_i - X_i^2$$
Now, fix $i$ (we can do this because of the symmetry in the question), and thus we have:
beginalignmathbbE[X_i X_j] &= frac1rBig(mathbbE[X_i sum_jneq i X_j] + mathbbE[X_i^2]Big) \
&= frac1r mathbbE[nX_i] \
&= fracn^2r^2
endalign
$endgroup$
1
$begingroup$
If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
$endgroup$
– Daniel Schepler
25 mins ago
$begingroup$
Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
$endgroup$
– Sean Lee
11 mins ago
add a comment |
$begingroup$
Since there are $r$ boxes and $n$ balls, and each ball is placed in a box with equal probability, we have:
$$ mathbbE[X_i] = fracnr $$
Now, we would like to know what is $mathbbE[X_i X_j] $.
We begin by making the following observation:
$$X_i = n - sum_jneq iX_j $$
Which gives us:
$$ X_isum_jneq iX_j = nX_i - X_i^2$$
Now, fix $i$ (we can do this because of the symmetry in the question), and thus we have:
beginalignmathbbE[X_i X_j] &= frac1rBig(mathbbE[X_i sum_jneq i X_j] + mathbbE[X_i^2]Big) \
&= frac1r mathbbE[nX_i] \
&= fracn^2r^2
endalign
$endgroup$
Since there are $r$ boxes and $n$ balls, and each ball is placed in a box with equal probability, we have:
$$ mathbbE[X_i] = fracnr $$
Now, we would like to know what is $mathbbE[X_i X_j] $.
We begin by making the following observation:
$$X_i = n - sum_jneq iX_j $$
Which gives us:
$$ X_isum_jneq iX_j = nX_i - X_i^2$$
Now, fix $i$ (we can do this because of the symmetry in the question), and thus we have:
beginalignmathbbE[X_i X_j] &= frac1rBig(mathbbE[X_i sum_jneq i X_j] + mathbbE[X_i^2]Big) \
&= frac1r mathbbE[nX_i] \
&= fracn^2r^2
endalign
edited 4 hours ago
answered 5 hours ago
Sean LeeSean Lee
801214
801214
1
$begingroup$
If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
$endgroup$
– Daniel Schepler
25 mins ago
$begingroup$
Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
$endgroup$
– Sean Lee
11 mins ago
add a comment |
1
$begingroup$
If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
$endgroup$
– Daniel Schepler
25 mins ago
$begingroup$
Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
$endgroup$
– Sean Lee
11 mins ago
1
1
$begingroup$
If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
$endgroup$
– Daniel Schepler
25 mins ago
$begingroup$
If indeed $E(X_i X_j) = E(X_i) E(X_j)$ for $i in j$ then that implies zero correlation. I would expect a bit of negative correlation. (And indeed, my preliminary calculation based on the decomposition from VHarisop's answer seems to result in $E(X_i X_j) = fracn(n-1)r^2$ for $i ne j$ and $E(X_i^2) = fracnr + fracn(n-1)r^2$.)
$endgroup$
– Daniel Schepler
25 mins ago
$begingroup$
Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
$endgroup$
– Sean Lee
11 mins ago
$begingroup$
Yeah, it seemed a little strange to me initially, but its consistent with your results btw: $frac1r[(r-1)E(X_iX_j) + E(X_i^2)] = fracn^2r^2$
$endgroup$
– Sean Lee
11 mins ago
add a comment |
$begingroup$
For the first part, you can use linearity of expectation to compute $mathbbE[X_i]$.
Specifically, you know that for a fixed box, the probability of putting a ball in it
is $frac1r$. Let
$$
Y_k^(i) = begincases
1 &, text if ball $k$ was placed in box $i$ \
0 &, text otherwise
endcases,
$$
which satisfies $mathbbE[Y_k^(i)] = mathbbP(Y_k^(i) = 1) = frac1r.$
Then you can write
$$
X_i = sum_j=1^n Y_j^(i) Rightarrow mathbbEX_i = sum_j=1^n frac1r = fracnr.
$$
$endgroup$
add a comment |
$begingroup$
For the first part, you can use linearity of expectation to compute $mathbbE[X_i]$.
Specifically, you know that for a fixed box, the probability of putting a ball in it
is $frac1r$. Let
$$
Y_k^(i) = begincases
1 &, text if ball $k$ was placed in box $i$ \
0 &, text otherwise
endcases,
$$
which satisfies $mathbbE[Y_k^(i)] = mathbbP(Y_k^(i) = 1) = frac1r.$
Then you can write
$$
X_i = sum_j=1^n Y_j^(i) Rightarrow mathbbEX_i = sum_j=1^n frac1r = fracnr.
$$
$endgroup$
add a comment |
$begingroup$
For the first part, you can use linearity of expectation to compute $mathbbE[X_i]$.
Specifically, you know that for a fixed box, the probability of putting a ball in it
is $frac1r$. Let
$$
Y_k^(i) = begincases
1 &, text if ball $k$ was placed in box $i$ \
0 &, text otherwise
endcases,
$$
which satisfies $mathbbE[Y_k^(i)] = mathbbP(Y_k^(i) = 1) = frac1r.$
Then you can write
$$
X_i = sum_j=1^n Y_j^(i) Rightarrow mathbbEX_i = sum_j=1^n frac1r = fracnr.
$$
$endgroup$
For the first part, you can use linearity of expectation to compute $mathbbE[X_i]$.
Specifically, you know that for a fixed box, the probability of putting a ball in it
is $frac1r$. Let
$$
Y_k^(i) = begincases
1 &, text if ball $k$ was placed in box $i$ \
0 &, text otherwise
endcases,
$$
which satisfies $mathbbE[Y_k^(i)] = mathbbP(Y_k^(i) = 1) = frac1r.$
Then you can write
$$
X_i = sum_j=1^n Y_j^(i) Rightarrow mathbbEX_i = sum_j=1^n frac1r = fracnr.
$$
answered 5 hours ago
VHarisopVHarisop
1,218421
1,218421
add a comment |
add a comment |
$begingroup$
Think of placing the ball in box "$i$" as success and not placing it as a failure.
This situation can be represented using the Hypergeometric Distribution.
$$
P(X=k) = fracK choose k N- Kchoose n - kN choose n.
$$
$N$ is the population size (number of boxes $r$)
$K$ is the number of success states in the population (just $1$ because the success is defined as placing the ball in box "$i$".)
$n$ is the number of draws (the number of balls $n$).
$k$ is the number of observed successes (the number of balls in box "$i$").
The expectation of the Hypergeometric Distribution is $nfracKN$, hence the mean of your variable
$$E[X_i]=nfrac1r=fracnr$$
$endgroup$
add a comment |
$begingroup$
Think of placing the ball in box "$i$" as success and not placing it as a failure.
This situation can be represented using the Hypergeometric Distribution.
$$
P(X=k) = fracK choose k N- Kchoose n - kN choose n.
$$
$N$ is the population size (number of boxes $r$)
$K$ is the number of success states in the population (just $1$ because the success is defined as placing the ball in box "$i$".)
$n$ is the number of draws (the number of balls $n$).
$k$ is the number of observed successes (the number of balls in box "$i$").
The expectation of the Hypergeometric Distribution is $nfracKN$, hence the mean of your variable
$$E[X_i]=nfrac1r=fracnr$$
$endgroup$
add a comment |
$begingroup$
Think of placing the ball in box "$i$" as success and not placing it as a failure.
This situation can be represented using the Hypergeometric Distribution.
$$
P(X=k) = fracK choose k N- Kchoose n - kN choose n.
$$
$N$ is the population size (number of boxes $r$)
$K$ is the number of success states in the population (just $1$ because the success is defined as placing the ball in box "$i$".)
$n$ is the number of draws (the number of balls $n$).
$k$ is the number of observed successes (the number of balls in box "$i$").
The expectation of the Hypergeometric Distribution is $nfracKN$, hence the mean of your variable
$$E[X_i]=nfrac1r=fracnr$$
$endgroup$
Think of placing the ball in box "$i$" as success and not placing it as a failure.
This situation can be represented using the Hypergeometric Distribution.
$$
P(X=k) = fracK choose k N- Kchoose n - kN choose n.
$$
$N$ is the population size (number of boxes $r$)
$K$ is the number of success states in the population (just $1$ because the success is defined as placing the ball in box "$i$".)
$n$ is the number of draws (the number of balls $n$).
$k$ is the number of observed successes (the number of balls in box "$i$").
The expectation of the Hypergeometric Distribution is $nfracKN$, hence the mean of your variable
$$E[X_i]=nfrac1r=fracnr$$
answered 5 hours ago
RScrlliRScrlli
761114
761114
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3184022%2fcomputing-the-expectation-of-the-number-of-balls-in-a-box%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
Are there any restrictions on $j$?
$endgroup$
– Sean Lee
5 hours ago
$begingroup$
@SeanLee In the question, no. I'm guessing it would have the same restrictions as i.
$endgroup$
– 631
5 hours ago
$begingroup$
Computationally, the answer to the second part appears to be $fracn^2r^2$
$endgroup$
– Sean Lee
4 hours ago