Why is this code so slow? The 2019 Stack Overflow Developer Survey Results Are InWhy is FindRoot initial value far from the specified one?Newton-Raphson Method and the Van der Waal Equation Coding questionWhat are the hidden specifications for FindRootHow can I resolve the insufficient memory to complete the computation problem for solving function with iterated variables?Why does this function inside FindRoot fail to evaluate?Very slow mathematica finite differencesManipulate+FindRoot+Plot3D very slow/crashAttacking a “Mathematica can't solve” problemErrors using FindRoot on slow numerical functionAvoiding a for loop to create a list
Accepted by European university, rejected by all American ones I applied to? Possible reasons?
What is preventing me from simply constructing a hash that's lower than the current target?
Are spiders unable to hurt humans, especially very small spiders?
How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?
Dropping list elements from nested list after evaluation
Why don't hard Brexiteers insist on a hard border to prevent illegal immigration after Brexit?
Are there any other methods to apply to solving simultaneous equations?
Is there a way to generate a uniformly distributed point on a sphere from a fixed amount of random real numbers?
Geography at the pixel level
What do I do when my TA workload is more than expected?
If my opponent casts Ultimate Price on my Phantasmal Bear, can I save it by casting Snap or Curfew?
Can withdrawing asylum be illegal?
For what reasons would an animal species NOT cross a *horizontal* land bridge?
How to support a colleague who finds meetings extremely tiring?
Is it ethical to upload a automatically generated paper to a non peer-reviewed site as part of a larger research?
Did Scotland spend $250,000 for the slogan "Welcome to Scotland"?
Did any laptop computers have a built-in 5 1/4 inch floppy drive?
Loose spokes after only a few rides
How can I define good in a religion that claims no moral authority?
Why can I use a list index as an indexing variable in a for loop?
Short story: man watches girlfriend's spaceship entering a 'black hole' (?) forever
How to type this arrow in math mode?
If climate change impact can be observed in nature, has that had any effect on rural, i.e. farming community, perception of the scientific consensus?
What does Linus Torvalds mean when he says that Git "never ever" tracks a file?
Why is this code so slow?
The 2019 Stack Overflow Developer Survey Results Are InWhy is FindRoot initial value far from the specified one?Newton-Raphson Method and the Van der Waal Equation Coding questionWhat are the hidden specifications for FindRootHow can I resolve the insufficient memory to complete the computation problem for solving function with iterated variables?Why does this function inside FindRoot fail to evaluate?Very slow mathematica finite differencesManipulate+FindRoot+Plot3D very slow/crashAttacking a “Mathematica can't solve” problemErrors using FindRoot on slow numerical functionAvoiding a for loop to create a list
$begingroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
24*e*s^-1, r < s]
For[i = 2, i < 101,
i++, u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , x, 1.]; Print[u[i]]]
equation-solving iteration
$endgroup$
add a comment |
$begingroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
24*e*s^-1, r < s]
For[i = 2, i < 101,
i++, u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , x, 1.]; Print[u[i]]]
equation-solving iteration
$endgroup$
add a comment |
$begingroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
24*e*s^-1, r < s]
For[i = 2, i < 101,
i++, u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , x, 1.]; Print[u[i]]]
equation-solving iteration
$endgroup$
This code for the first five iterations the speed is okay , but after that the speed is very slow, I cannot understand what is wrong with this? Would you please help me fix it?
Clear[A, r, x, s, e]
s := 0.3405
e := 1.6539*10^-21
u[0] := 0.
u[1] := 0.1
A[r_] := A[r] =
Piecewise[r - 2.5 s - 48*e *s^12*r^-13 + 24*e*s^6*r^-7,
r > 2.5 s, -48*e*s^12*r^-13 + 24*e*s^6*r^-7,
s [LessSlantEqual] r [LessSlantEqual] 2.5 s, r - s -
24*e*s^-1, r < s]
For[i = 2, i < 101,
i++, u[i_] :=
x /. FindRoot[
u[i - 1] +
1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) -
0.9 A[x] == x , x, 1.]; Print[u[i]]]
equation-solving iteration
equation-solving iteration
asked 2 hours ago
morapimorapi
203
203
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
r - s - 24*e*s^-1, r < s];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]
Array[u, 100]
0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675
(takes about 5 seconds)
Alternatively, use
Table[u[i], i, 1, 100]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function ()
return StackExchange.using("mathjaxEditing", function ()
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
);
);
, "mathjax-editing");
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "387"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
r - s - 24*e*s^-1, r < s];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]
Array[u, 100]
0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675
(takes about 5 seconds)
Alternatively, use
Table[u[i], i, 1, 100]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
add a comment |
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
r - s - 24*e*s^-1, r < s];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]
Array[u, 100]
0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675
(takes about 5 seconds)
Alternatively, use
Table[u[i], i, 1, 100]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
add a comment |
$begingroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
r - s - 24*e*s^-1, r < s];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]
Array[u, 100]
0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675
(takes about 5 seconds)
Alternatively, use
Table[u[i], i, 1, 100]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
$endgroup$
I recommend you learn the distinction between immediate (=
) and delayed (:=
) assignments. They make the difference between slow and fast code here. Start with this tutorial or this book chapter, then look at memoization.
s = 0.3405;
e = 1.6539*10^-21;
u[0] = 0.;
u[1] = 0.1;
A[r_] = Piecewise[r - 2.5 s - 48*e*s^12*r^-13 + 24*e*s^6*r^-7, r > 2.5 s,
-48*e*s^12*r^-13 + 24*e*s^6*r^-7, s <= r <= 2.5 s,
r - s - 24*e*s^-1, r < s];
u[i_] := u[i] = x /. FindRoot[
u[i - 1] + 1/(i^2 (u[i - 1] - u[i - 2])^2) (u[i - 1] - u[i - 2]) - 0.9 A[x] == x, x, 1.]
Array[u, 100]
0.1, 1.77164, 1.37065, 1.04259, 0.887781, 0.708344, 0.59461,
0.457228, 0.367364, 0.296071, 0.256104, 0.20463, 0.208487, 1.20917,
1.04197, 0.939331, 0.879865, 0.827963, 0.774591, 0.72775, 0.67934,
0.63666, 0.592369, 0.553172, 0.512352, 0.476112, 0.438261, 0.404563,
0.369277, 0.339073, 0.321616, 0.301118, 0.296195, 0.224688, 0.273538,
0.31357, 0.33593, 0.366902, 0.38813, 0.417572, 0.437777, 0.465834,
0.48511, 0.511907, 0.530336, 0.55598, 0.573633, 0.598219, 0.615159,
0.638772, 0.655054, 0.677768, 0.693441, 0.715321, 0.73043, 0.751535,
0.766118, 0.786503, 0.800596, 0.820306, 0.833941, 0.852182, 0.85901,
0.874152, 0.871531, 0.78396, 0.781416, 0.696402, 0.693931, 0.611329,
0.608927, 0.528603, 0.526267, 0.448099, 0.445825, 0.369701, 0.367485,
0.315658, 0.325798, 0.341207, 0.351098, 0.366134, 0.375788, 0.390468,
0.399897, 0.414237, 0.42345, 0.437466, 0.446473, 0.46018, 0.46899,
0.4824, 0.491022, 0.504149, 0.51259, 0.525444, 0.533712, 0.546306,
0.554408, 0.56675
(takes about 5 seconds)
Alternatively, use
Table[u[i], i, 1, 100]
(same result). Your combination of For
and Print
shows the results but doesn't let you keep using them for more calculations.
edited 1 hour ago
answered 1 hour ago
RomanRoman
5,11011130
5,11011130
add a comment |
add a comment |
Thanks for contributing an answer to Mathematica Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f195054%2fwhy-is-this-code-so-slow%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown