Is it correct to say the Neural Networks are an alternative way of performing Maximum Likelihood Estimation? if not, why? The 2019 Stack Overflow Developer Survey Results Are InCan we use MLE to estimate Neural Network weights?Are loss functions what define the identity of each supervised machine learning algorithm?What can we say about the likelihood function, besides using it in maximum likelihood estimation?Why is maximum likelihood estimation considered to be a frequentist techniqueMaximum Likelihood Estimation — why it is used despite being biased in many casesWhat is the objective of maximum likelihood estimation?Maximum Likelihood estimation and the Kalman filterWhy does Maximum Likelihood estimation maximizes probability density instead of probabilityWhy are the Least-Squares and Maximum-Likelihood methods of regression not equivalent when the errors are not normally distributed?the relationship between maximizing the likelihood and minimizing the cross-entropythe meaning of likelihood in maximum likelihood estimationHow to construct a cross-entropy loss for general regression targets?

Mathematics of imaging the black hole

What information about me do stores get via my credit card?

Match Roman Numerals

Old scifi movie from the 50s or 60s with men in solid red uniforms who interrogate a spy from the past

If I score a critical hit on an 18 or higher, what are my chances of getting a critical hit if I roll 3d20?

Button changing its text & action. Good or terrible?

Is it possible for absolutely everyone to attain enlightenment?

Why does the nucleus not repel itself?

Why doesn't shell automatically fix "useless use of cat"?

Does adding complexity mean a more secure cipher?

Star Trek - X-shaped Item on Regula/Orbital Office Starbases

Kerning for subscripts of sigma?

How can I add encounters in the Lost Mine of Phandelver campaign without giving PCs too much XP?

Can there be female White Walkers?

Keeping a retro style to sci-fi spaceships?

writing variables above the numbers in tikz picture

What do these terms in Caesar's Gallic wars mean?

What does Linus Torvalds mean when he says that Git "never ever" tracks a file?

How to obtain a position of last non-zero element

Deal with toxic manager when you can't quit

How to translate "being like"?

Can withdrawing asylum be illegal?

Are turbopumps lubricated?

Correct punctuation for showing a character's confusion



Is it correct to say the Neural Networks are an alternative way of performing Maximum Likelihood Estimation? if not, why?



The 2019 Stack Overflow Developer Survey Results Are InCan we use MLE to estimate Neural Network weights?Are loss functions what define the identity of each supervised machine learning algorithm?What can we say about the likelihood function, besides using it in maximum likelihood estimation?Why is maximum likelihood estimation considered to be a frequentist techniqueMaximum Likelihood Estimation — why it is used despite being biased in many casesWhat is the objective of maximum likelihood estimation?Maximum Likelihood estimation and the Kalman filterWhy does Maximum Likelihood estimation maximizes probability density instead of probabilityWhy are the Least-Squares and Maximum-Likelihood methods of regression not equivalent when the errors are not normally distributed?the relationship between maximizing the likelihood and minimizing the cross-entropythe meaning of likelihood in maximum likelihood estimationHow to construct a cross-entropy loss for general regression targets?



.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty margin-bottom:0;








3












$begingroup$


We often say that minimizing the (negative) cross-entropy error is the same as maximizing the likelihood. So can we say that NN are just an alternative way of performing Maximum Likelihood Estimation? if not, why?










share|cite|improve this question







New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    Possible duplicate of Can we use MLE to estimate Neural Network weights?
    $endgroup$
    – Sycorax
    4 hours ago

















3












$begingroup$


We often say that minimizing the (negative) cross-entropy error is the same as maximizing the likelihood. So can we say that NN are just an alternative way of performing Maximum Likelihood Estimation? if not, why?










share|cite|improve this question







New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$







  • 1




    $begingroup$
    Possible duplicate of Can we use MLE to estimate Neural Network weights?
    $endgroup$
    – Sycorax
    4 hours ago













3












3








3


2



$begingroup$


We often say that minimizing the (negative) cross-entropy error is the same as maximizing the likelihood. So can we say that NN are just an alternative way of performing Maximum Likelihood Estimation? if not, why?










share|cite|improve this question







New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$




We often say that minimizing the (negative) cross-entropy error is the same as maximizing the likelihood. So can we say that NN are just an alternative way of performing Maximum Likelihood Estimation? if not, why?







neural-networks maximum-likelihood






share|cite|improve this question







New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question







New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question






New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 6 hours ago









aca06aca06

161




161




New contributor




aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






aca06 is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







  • 1




    $begingroup$
    Possible duplicate of Can we use MLE to estimate Neural Network weights?
    $endgroup$
    – Sycorax
    4 hours ago












  • 1




    $begingroup$
    Possible duplicate of Can we use MLE to estimate Neural Network weights?
    $endgroup$
    – Sycorax
    4 hours ago







1




1




$begingroup$
Possible duplicate of Can we use MLE to estimate Neural Network weights?
$endgroup$
– Sycorax
4 hours ago




$begingroup$
Possible duplicate of Can we use MLE to estimate Neural Network weights?
$endgroup$
– Sycorax
4 hours ago










2 Answers
2






active

oldest

votes


















3












$begingroup$

In abstract terms, neural networks are models, or if you prefer, functions with unknown parameters, where we try to learn the parameter by minimizing loss function (not just cross entropy, there are many other possibilities). In general, minimizing loss is in most cases equivalent to maximizing some likelihood function, but as discussed in this thread, it's not that simple.



You cannot say that they are equivalent, because minimizing loss, or maximizing likelihood is a method of finding the parameters, while neural network is the function defined in terms of those parameters.






share|cite|improve this answer









$endgroup$








  • 1




    $begingroup$
    I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
    $endgroup$
    – Sycorax
    3 hours ago







  • 1




    $begingroup$
    @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
    $endgroup$
    – Tim
    3 hours ago






  • 1




    $begingroup$
    What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
    $endgroup$
    – aca06
    3 hours ago






  • 1




    $begingroup$
    @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
    $endgroup$
    – Tim
    3 hours ago


















0












$begingroup$

These are fairly orthogonal topics.



Neural networks are a type of model which has a very large number of parameters. Maximum Likelihood Estimation is a very common method for estimating parameters from a given model and data. Typically, a model will allow you to compute a likelihood function from a model, data and parameter values. Since we don't know what the actual parameter values are, one way of estimating them is to use the value that maximizes the given likelihood. Neural networks are our model, maximum likelihood estimation is one method for estimating the parameters of our model.



One slightly technical note is that often, Maximum Likelihood Estimation is not exactly used in Neural Networks. That is, there are a lot of regularization methods used that imply we're not actually maximizing a likelihood function. These include:



(1) Penalized maximum likelihood. This one is a bit of a cop-out, as it doesn't actually take too much effort to think of Penalized likelihoods as actually just a different likelihood (i.e., one with priors) that one is maximizing.



(2) Random drop out. In especially a lot of the newer architectures, parameter values will randomly be set to 0 during training. This procedure is more definitely outside the realm of maximum likelihood estimation.



(3) Early stopping. It's not the most popular method at all, but one way to prevent overfitting is just to stop the optimization algorithm before it converges. Again, this is technically not maximum likelihood estimation, it's really just an ad-hoc solution to overfitting.



(4) Bayesian methods, probably the most common alternative to Maximum Likelihood Estimation in the statistics world, are also used for estimating the parameter values of a neural network. However, this is often too computationally intensive for large networks.






share|cite|improve this answer











$endgroup$













    Your Answer





    StackExchange.ifUsing("editor", function ()
    return StackExchange.using("mathjaxEditing", function ()
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix)
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    );
    );
    , "mathjax-editing");

    StackExchange.ready(function()
    var channelOptions =
    tags: "".split(" "),
    id: "65"
    ;
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function()
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled)
    StackExchange.using("snippets", function()
    createEditor();
    );

    else
    createEditor();

    );

    function createEditor()
    StackExchange.prepareEditor(
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: false,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: null,
    bindNavPrevention: true,
    postfix: "",
    imageUploader:
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    ,
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    );



    );






    aca06 is a new contributor. Be nice, and check out our Code of Conduct.









    draft saved

    draft discarded


















    StackExchange.ready(
    function ()
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f402511%2fis-it-correct-to-say-the-neural-networks-are-an-alternative-way-of-performing-ma%23new-answer', 'question_page');

    );

    Post as a guest















    Required, but never shown

























    2 Answers
    2






    active

    oldest

    votes








    2 Answers
    2






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    3












    $begingroup$

    In abstract terms, neural networks are models, or if you prefer, functions with unknown parameters, where we try to learn the parameter by minimizing loss function (not just cross entropy, there are many other possibilities). In general, minimizing loss is in most cases equivalent to maximizing some likelihood function, but as discussed in this thread, it's not that simple.



    You cannot say that they are equivalent, because minimizing loss, or maximizing likelihood is a method of finding the parameters, while neural network is the function defined in terms of those parameters.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
      $endgroup$
      – Sycorax
      3 hours ago







    • 1




      $begingroup$
      @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
      $endgroup$
      – Tim
      3 hours ago






    • 1




      $begingroup$
      What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
      $endgroup$
      – aca06
      3 hours ago






    • 1




      $begingroup$
      @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
      $endgroup$
      – Tim
      3 hours ago















    3












    $begingroup$

    In abstract terms, neural networks are models, or if you prefer, functions with unknown parameters, where we try to learn the parameter by minimizing loss function (not just cross entropy, there are many other possibilities). In general, minimizing loss is in most cases equivalent to maximizing some likelihood function, but as discussed in this thread, it's not that simple.



    You cannot say that they are equivalent, because minimizing loss, or maximizing likelihood is a method of finding the parameters, while neural network is the function defined in terms of those parameters.






    share|cite|improve this answer









    $endgroup$








    • 1




      $begingroup$
      I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
      $endgroup$
      – Sycorax
      3 hours ago







    • 1




      $begingroup$
      @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
      $endgroup$
      – Tim
      3 hours ago






    • 1




      $begingroup$
      What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
      $endgroup$
      – aca06
      3 hours ago






    • 1




      $begingroup$
      @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
      $endgroup$
      – Tim
      3 hours ago













    3












    3








    3





    $begingroup$

    In abstract terms, neural networks are models, or if you prefer, functions with unknown parameters, where we try to learn the parameter by minimizing loss function (not just cross entropy, there are many other possibilities). In general, minimizing loss is in most cases equivalent to maximizing some likelihood function, but as discussed in this thread, it's not that simple.



    You cannot say that they are equivalent, because minimizing loss, or maximizing likelihood is a method of finding the parameters, while neural network is the function defined in terms of those parameters.






    share|cite|improve this answer









    $endgroup$



    In abstract terms, neural networks are models, or if you prefer, functions with unknown parameters, where we try to learn the parameter by minimizing loss function (not just cross entropy, there are many other possibilities). In general, minimizing loss is in most cases equivalent to maximizing some likelihood function, but as discussed in this thread, it's not that simple.



    You cannot say that they are equivalent, because minimizing loss, or maximizing likelihood is a method of finding the parameters, while neural network is the function defined in terms of those parameters.







    share|cite|improve this answer












    share|cite|improve this answer



    share|cite|improve this answer










    answered 4 hours ago









    TimTim

    60k9133229




    60k9133229







    • 1




      $begingroup$
      I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
      $endgroup$
      – Sycorax
      3 hours ago







    • 1




      $begingroup$
      @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
      $endgroup$
      – Tim
      3 hours ago






    • 1




      $begingroup$
      What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
      $endgroup$
      – aca06
      3 hours ago






    • 1




      $begingroup$
      @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
      $endgroup$
      – Tim
      3 hours ago












    • 1




      $begingroup$
      I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
      $endgroup$
      – Sycorax
      3 hours ago







    • 1




      $begingroup$
      @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
      $endgroup$
      – Tim
      3 hours ago






    • 1




      $begingroup$
      What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
      $endgroup$
      – aca06
      3 hours ago






    • 1




      $begingroup$
      @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
      $endgroup$
      – Tim
      3 hours ago







    1




    1




    $begingroup$
    I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
    $endgroup$
    – Sycorax
    3 hours ago





    $begingroup$
    I'm trying to parse the distinction that you draw in the second paragraph. If I understand correctly, you would approve of a statement such as "My neural network model maximizes a certain log-likelihood" but not the statement "Neural networks and maximum likelihood estimators are the same concept." Is this a fair assessment?
    $endgroup$
    – Sycorax
    3 hours ago





    1




    1




    $begingroup$
    @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
    $endgroup$
    – Tim
    3 hours ago




    $begingroup$
    @Sycorax yes, that is correct. If it is unclear and you have idea for better re-phrasing, feel free to suggest edit.
    $endgroup$
    – Tim
    3 hours ago




    1




    1




    $begingroup$
    What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
    $endgroup$
    – aca06
    3 hours ago




    $begingroup$
    What if instead, we compare gradient descent and MLE ? It seems to me that they are just two methods for finding the best parameters.
    $endgroup$
    – aca06
    3 hours ago




    1




    1




    $begingroup$
    @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
    $endgroup$
    – Tim
    3 hours ago




    $begingroup$
    @aca06 gradient descent is an optimization algorithm, MLE is a method of estimating parameters. You can use gradient descent to find minimum of negative likelihood function (or gradient ascent for maximizing likelihood).
    $endgroup$
    – Tim
    3 hours ago













    0












    $begingroup$

    These are fairly orthogonal topics.



    Neural networks are a type of model which has a very large number of parameters. Maximum Likelihood Estimation is a very common method for estimating parameters from a given model and data. Typically, a model will allow you to compute a likelihood function from a model, data and parameter values. Since we don't know what the actual parameter values are, one way of estimating them is to use the value that maximizes the given likelihood. Neural networks are our model, maximum likelihood estimation is one method for estimating the parameters of our model.



    One slightly technical note is that often, Maximum Likelihood Estimation is not exactly used in Neural Networks. That is, there are a lot of regularization methods used that imply we're not actually maximizing a likelihood function. These include:



    (1) Penalized maximum likelihood. This one is a bit of a cop-out, as it doesn't actually take too much effort to think of Penalized likelihoods as actually just a different likelihood (i.e., one with priors) that one is maximizing.



    (2) Random drop out. In especially a lot of the newer architectures, parameter values will randomly be set to 0 during training. This procedure is more definitely outside the realm of maximum likelihood estimation.



    (3) Early stopping. It's not the most popular method at all, but one way to prevent overfitting is just to stop the optimization algorithm before it converges. Again, this is technically not maximum likelihood estimation, it's really just an ad-hoc solution to overfitting.



    (4) Bayesian methods, probably the most common alternative to Maximum Likelihood Estimation in the statistics world, are also used for estimating the parameter values of a neural network. However, this is often too computationally intensive for large networks.






    share|cite|improve this answer











    $endgroup$

















      0












      $begingroup$

      These are fairly orthogonal topics.



      Neural networks are a type of model which has a very large number of parameters. Maximum Likelihood Estimation is a very common method for estimating parameters from a given model and data. Typically, a model will allow you to compute a likelihood function from a model, data and parameter values. Since we don't know what the actual parameter values are, one way of estimating them is to use the value that maximizes the given likelihood. Neural networks are our model, maximum likelihood estimation is one method for estimating the parameters of our model.



      One slightly technical note is that often, Maximum Likelihood Estimation is not exactly used in Neural Networks. That is, there are a lot of regularization methods used that imply we're not actually maximizing a likelihood function. These include:



      (1) Penalized maximum likelihood. This one is a bit of a cop-out, as it doesn't actually take too much effort to think of Penalized likelihoods as actually just a different likelihood (i.e., one with priors) that one is maximizing.



      (2) Random drop out. In especially a lot of the newer architectures, parameter values will randomly be set to 0 during training. This procedure is more definitely outside the realm of maximum likelihood estimation.



      (3) Early stopping. It's not the most popular method at all, but one way to prevent overfitting is just to stop the optimization algorithm before it converges. Again, this is technically not maximum likelihood estimation, it's really just an ad-hoc solution to overfitting.



      (4) Bayesian methods, probably the most common alternative to Maximum Likelihood Estimation in the statistics world, are also used for estimating the parameter values of a neural network. However, this is often too computationally intensive for large networks.






      share|cite|improve this answer











      $endgroup$















        0












        0








        0





        $begingroup$

        These are fairly orthogonal topics.



        Neural networks are a type of model which has a very large number of parameters. Maximum Likelihood Estimation is a very common method for estimating parameters from a given model and data. Typically, a model will allow you to compute a likelihood function from a model, data and parameter values. Since we don't know what the actual parameter values are, one way of estimating them is to use the value that maximizes the given likelihood. Neural networks are our model, maximum likelihood estimation is one method for estimating the parameters of our model.



        One slightly technical note is that often, Maximum Likelihood Estimation is not exactly used in Neural Networks. That is, there are a lot of regularization methods used that imply we're not actually maximizing a likelihood function. These include:



        (1) Penalized maximum likelihood. This one is a bit of a cop-out, as it doesn't actually take too much effort to think of Penalized likelihoods as actually just a different likelihood (i.e., one with priors) that one is maximizing.



        (2) Random drop out. In especially a lot of the newer architectures, parameter values will randomly be set to 0 during training. This procedure is more definitely outside the realm of maximum likelihood estimation.



        (3) Early stopping. It's not the most popular method at all, but one way to prevent overfitting is just to stop the optimization algorithm before it converges. Again, this is technically not maximum likelihood estimation, it's really just an ad-hoc solution to overfitting.



        (4) Bayesian methods, probably the most common alternative to Maximum Likelihood Estimation in the statistics world, are also used for estimating the parameter values of a neural network. However, this is often too computationally intensive for large networks.






        share|cite|improve this answer











        $endgroup$



        These are fairly orthogonal topics.



        Neural networks are a type of model which has a very large number of parameters. Maximum Likelihood Estimation is a very common method for estimating parameters from a given model and data. Typically, a model will allow you to compute a likelihood function from a model, data and parameter values. Since we don't know what the actual parameter values are, one way of estimating them is to use the value that maximizes the given likelihood. Neural networks are our model, maximum likelihood estimation is one method for estimating the parameters of our model.



        One slightly technical note is that often, Maximum Likelihood Estimation is not exactly used in Neural Networks. That is, there are a lot of regularization methods used that imply we're not actually maximizing a likelihood function. These include:



        (1) Penalized maximum likelihood. This one is a bit of a cop-out, as it doesn't actually take too much effort to think of Penalized likelihoods as actually just a different likelihood (i.e., one with priors) that one is maximizing.



        (2) Random drop out. In especially a lot of the newer architectures, parameter values will randomly be set to 0 during training. This procedure is more definitely outside the realm of maximum likelihood estimation.



        (3) Early stopping. It's not the most popular method at all, but one way to prevent overfitting is just to stop the optimization algorithm before it converges. Again, this is technically not maximum likelihood estimation, it's really just an ad-hoc solution to overfitting.



        (4) Bayesian methods, probably the most common alternative to Maximum Likelihood Estimation in the statistics world, are also used for estimating the parameter values of a neural network. However, this is often too computationally intensive for large networks.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 1 hour ago

























        answered 1 hour ago









        Cliff ABCliff AB

        13.8k12567




        13.8k12567




















            aca06 is a new contributor. Be nice, and check out our Code of Conduct.









            draft saved

            draft discarded


















            aca06 is a new contributor. Be nice, and check out our Code of Conduct.












            aca06 is a new contributor. Be nice, and check out our Code of Conduct.











            aca06 is a new contributor. Be nice, and check out our Code of Conduct.














            Thanks for contributing an answer to Cross Validated!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid


            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.

            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function ()
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f402511%2fis-it-correct-to-say-the-neural-networks-are-an-alternative-way-of-performing-ma%23new-answer', 'question_page');

            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Log på Navigationsmenu

            Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

            Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5