Why is the change of basis formula counter-intuitive? [See details] Announcing the arrival of Valued Associate #679: Cesar Manara Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Change of basisChange of basis = similarity?Change of Basis vs. Linear TransformationMatrices for change of basis linear transformationsConfusion about change of basis matrixIntuitive understanding of the $BAB^-1$ formula for changing basis in linear transformations.Standard Basis and Change of Basis MatrixStandard matrix linear transformation - change of basisHard change of basis/ linear transformation problemChange of basis difference between linear and bilinear transformation
Can you force honesty by using the Speak with Dead and Zone of Truth spells together?
How many time has Arya actually used Needle?
Google .dev domain strangely redirects to https
Is CEO the "profession" with the most psychopaths?
Why is the change of basis formula counter-intuitive? [See details]
What does Turing mean by this statement?
A proverb that is used to imply that you have unexpectedly faced a big problem
Is multiple magic items in one inherently imbalanced?
Relating to the President and obstruction, were Mueller's conclusions preordained?
Why is a lens darker than other ones when applying the same settings?
Project Euler #1 in C++
As a dual citizen, my US passport will expire one day after traveling to the US. Will this work?
Should a wizard buy fine inks every time he want to copy spells into his spellbook?
Trying to understand entropy as a novice in thermodynamics
Co-worker has annoying ringtone
Asymptotics question
Resize vertical bars (absolute-value symbols)
What are the main differences between Stargate SG-1 cuts?
How much damage would a cupful of neutron star matter do to the Earth?
Getting out of while loop on console
Why complex landing gears are used instead of simple,reliability and light weight muscle wire or shape memory alloys?
GDP with Intermediate Production
How can a team of shapeshifters communicate?
How to change the tick of the color bar legend to black
Why is the change of basis formula counter-intuitive? [See details]
Announcing the arrival of Valued Associate #679: Cesar Manara
Planned maintenance scheduled April 23, 2019 at 23:30 UTC (7:30pm US/Eastern)Change of basisChange of basis = similarity?Change of Basis vs. Linear TransformationMatrices for change of basis linear transformationsConfusion about change of basis matrixIntuitive understanding of the $BAB^-1$ formula for changing basis in linear transformations.Standard Basis and Change of Basis MatrixStandard matrix linear transformation - change of basisHard change of basis/ linear transformation problemChange of basis difference between linear and bilinear transformation
$begingroup$
The formula of change of basis $[T]_B' = P_B' <-B[T]_BP_B <- B'$.
I don't understand why you need $P_B <- B'$? It seems to me that if you have the transformation expressed in B already with $[T]_B$ you just need to translate to B' by using $P_B' <-B$ to get $[T]_B'$ rendering $P_B <- B'$ as useless. Can someone explain what I am missing here?
linear-algebra
$endgroup$
add a comment |
$begingroup$
The formula of change of basis $[T]_B' = P_B' <-B[T]_BP_B <- B'$.
I don't understand why you need $P_B <- B'$? It seems to me that if you have the transformation expressed in B already with $[T]_B$ you just need to translate to B' by using $P_B' <-B$ to get $[T]_B'$ rendering $P_B <- B'$ as useless. Can someone explain what I am missing here?
linear-algebra
$endgroup$
$begingroup$
@littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
$endgroup$
– Dr.Stone
4 hours ago
add a comment |
$begingroup$
The formula of change of basis $[T]_B' = P_B' <-B[T]_BP_B <- B'$.
I don't understand why you need $P_B <- B'$? It seems to me that if you have the transformation expressed in B already with $[T]_B$ you just need to translate to B' by using $P_B' <-B$ to get $[T]_B'$ rendering $P_B <- B'$ as useless. Can someone explain what I am missing here?
linear-algebra
$endgroup$
The formula of change of basis $[T]_B' = P_B' <-B[T]_BP_B <- B'$.
I don't understand why you need $P_B <- B'$? It seems to me that if you have the transformation expressed in B already with $[T]_B$ you just need to translate to B' by using $P_B' <-B$ to get $[T]_B'$ rendering $P_B <- B'$ as useless. Can someone explain what I am missing here?
linear-algebra
linear-algebra
asked 4 hours ago
Dr.StoneDr.Stone
626
626
$begingroup$
@littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
$endgroup$
– Dr.Stone
4 hours ago
add a comment |
$begingroup$
@littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
$endgroup$
– Dr.Stone
4 hours ago
$begingroup$
@littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
$endgroup$
– Dr.Stone
4 hours ago
$begingroup$
@littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
$endgroup$
– Dr.Stone
4 hours ago
add a comment |
2 Answers
2
active
oldest
votes
$begingroup$
Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.
$endgroup$
add a comment |
$begingroup$
Write $B=e_1,...,e_n, B' =e_1',...,e_n'$
If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.
So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_B'to B(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_Bto B'$ comes from on the left. This gives the formula
$endgroup$
add a comment |
Your Answer
StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);
else
createEditor();
);
function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);
);
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195162%2fwhy-is-the-change-of-basis-formula-counter-intuitive-see-details%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
$begingroup$
Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.
$endgroup$
add a comment |
$begingroup$
Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.
$endgroup$
add a comment |
$begingroup$
Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.
$endgroup$
Imagine what you must do to a vector expressed in $B'$ coordinates in order to apply $T$ to it. First you switch from $B'$ coordinates to $B$ coordinates, then you multiply by the matrix of $T$ (with respect to $B$), then finally you switch back to $B'$ coordinates.
answered 4 hours ago
littleOlittleO
30.6k649111
30.6k649111
add a comment |
add a comment |
$begingroup$
Write $B=e_1,...,e_n, B' =e_1',...,e_n'$
If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.
So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_B'to B(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_Bto B'$ comes from on the left. This gives the formula
$endgroup$
add a comment |
$begingroup$
Write $B=e_1,...,e_n, B' =e_1',...,e_n'$
If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.
So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_B'to B(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_Bto B'$ comes from on the left. This gives the formula
$endgroup$
add a comment |
$begingroup$
Write $B=e_1,...,e_n, B' =e_1',...,e_n'$
If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.
So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_B'to B(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_Bto B'$ comes from on the left. This gives the formula
$endgroup$
Write $B=e_1,...,e_n, B' =e_1',...,e_n'$
If you have the first member of $B'$, $e_1'$, and you want to compute the effect of $T$ on it, then applying $[T]_B$ to $(1,0,...0)$ will be the effect of $T$ on the first member of the basis $B$, so $e_1$, written in the basis $B$ so it has nothing to do with the image of $e_1'$.
So if you only know $[T]_B$ and want to compute $Te_1'$, then you first have to write $e_1'$ in the basis $B$, so you compute $P_B'to B(1,0,...0)$, then compute $[T]_B$ times that, which yields $Te_1'$ but written in the basis $B$, so now you have to write it in the basis $B'$ to get the correct result, that's where $P_Bto B'$ comes from on the left. This gives the formula
answered 4 hours ago
MaxMax
16.6k11144
16.6k11144
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3195162%2fwhy-is-the-change-of-basis-formula-counter-intuitive-see-details%23new-answer', 'question_page');
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function ()
StackExchange.helpers.onClickDraftSave('#login-link');
);
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
$begingroup$
@littleO this is actually what I was looking for. Can you write it as real answer instead of a comment it might help others understand as well so I can approve it.
$endgroup$
– Dr.Stone
4 hours ago