Filter a data-frame and add a new column according to the given conditionAdd new keys to a dictionary?Adding new column to existing DataFrame in Python pandas“Large data” work flows using pandasAdd numpy array as column to Pandas data frameConvert Python dict into a dataframeAdd new column in Pandas DataFrame PythonPython: function default input that stands for everythingpython subset data frame by column valueMatch columns and append to data frame, Python 3.6How to pivot a dataframe

What is this minifig/minidoll (?)

Should generated documentation be stored in a Git repository?

Why doesn't Iron Man's action affect this person in Endgame?

Why is it harder to turn a motor/generator with shorted terminals?

Is this a group? If so, what group is it?

The meaning of the Middle English word “king”

Are there any sonatas with only two sections?

Is 95% of what you read in the financial press “either wrong or irrelevant?”

Given 0s on Assignments with suspected and dismissed cheating?

What information exactly does an instruction cache store?

Do not cross the line!

Is it wrong to omit object pronouns in these sentences?

Help understanding this line - usage of くれる

Wireless headphones interfere with Wi-Fi signal on laptop

How to continually let my readers know what time it is in my story, in an organic way?

Unexpected Netflix account registered to my Gmail address - any way it could be a hack attempt?

Formal Definition of Dot Product

"The van's really booking"

How do I adjust encounters to challenge my lycanthrope players without negating their cool new abilities?

How to disable Two-factor authentication for Apple ID?

Can my Serbian girlfriend apply for a UK Standard Visitor visa and stay for the whole 6 months?

Can only the master initiate communication in SPI whereas in I2C the slave can also initiate the communication?

Why didn't the Avengers use this object earlier?

Is this possible when it comes to the relations of P, NP, NP-Hard and NP-Complete?



Filter a data-frame and add a new column according to the given condition


Add new keys to a dictionary?Adding new column to existing DataFrame in Python pandas“Large data” work flows using pandasAdd numpy array as column to Pandas data frameConvert Python dict into a dataframeAdd new column in Pandas DataFrame PythonPython: function default input that stands for everythingpython subset data frame by column valueMatch columns and append to data frame, Python 3.6How to pivot a dataframe






.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty height:90px;width:728px;box-sizing:border-box;








6















I have a data frame like this



ID col1 col2 
1 Abc street 2017-07-27
1 None 2017-08-17
1 Def street 2018-07-15
1 None 2018-08-13
2 fbg street 2018-01-07
2 None 2018-08-12
2 trf street 2019-01-15


I want to filter all the 'None' from col1 and add the corresponding col2 value into a new column col3. My output look like this



ID col1 col2 col3 
1 Abc street 2017-07-27 2017-08-17
1 Def street 2018-07-15 2018-08-13
2 fbg street 2018-01-07 2018-08-12
2 trf street 2019-01-15


Can anyone help me to achieve this.










share|improve this question






















  • Is it None or 'None'?

    – user3483203
    6 hours ago











  • oh!!. it's actually 'None'

    – No_body
    6 hours ago

















6















I have a data frame like this



ID col1 col2 
1 Abc street 2017-07-27
1 None 2017-08-17
1 Def street 2018-07-15
1 None 2018-08-13
2 fbg street 2018-01-07
2 None 2018-08-12
2 trf street 2019-01-15


I want to filter all the 'None' from col1 and add the corresponding col2 value into a new column col3. My output look like this



ID col1 col2 col3 
1 Abc street 2017-07-27 2017-08-17
1 Def street 2018-07-15 2018-08-13
2 fbg street 2018-01-07 2018-08-12
2 trf street 2019-01-15


Can anyone help me to achieve this.










share|improve this question






















  • Is it None or 'None'?

    – user3483203
    6 hours ago











  • oh!!. it's actually 'None'

    – No_body
    6 hours ago













6












6








6








I have a data frame like this



ID col1 col2 
1 Abc street 2017-07-27
1 None 2017-08-17
1 Def street 2018-07-15
1 None 2018-08-13
2 fbg street 2018-01-07
2 None 2018-08-12
2 trf street 2019-01-15


I want to filter all the 'None' from col1 and add the corresponding col2 value into a new column col3. My output look like this



ID col1 col2 col3 
1 Abc street 2017-07-27 2017-08-17
1 Def street 2018-07-15 2018-08-13
2 fbg street 2018-01-07 2018-08-12
2 trf street 2019-01-15


Can anyone help me to achieve this.










share|improve this question














I have a data frame like this



ID col1 col2 
1 Abc street 2017-07-27
1 None 2017-08-17
1 Def street 2018-07-15
1 None 2018-08-13
2 fbg street 2018-01-07
2 None 2018-08-12
2 trf street 2019-01-15


I want to filter all the 'None' from col1 and add the corresponding col2 value into a new column col3. My output look like this



ID col1 col2 col3 
1 Abc street 2017-07-27 2017-08-17
1 Def street 2018-07-15 2018-08-13
2 fbg street 2018-01-07 2018-08-12
2 trf street 2019-01-15


Can anyone help me to achieve this.







python python-3.x pandas numpy pandas-groupby






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked 6 hours ago









No_bodyNo_body

359214




359214












  • Is it None or 'None'?

    – user3483203
    6 hours ago











  • oh!!. it's actually 'None'

    – No_body
    6 hours ago

















  • Is it None or 'None'?

    – user3483203
    6 hours ago











  • oh!!. it's actually 'None'

    – No_body
    6 hours ago
















Is it None or 'None'?

– user3483203
6 hours ago





Is it None or 'None'?

– user3483203
6 hours ago













oh!!. it's actually 'None'

– No_body
6 hours ago





oh!!. it's actually 'None'

– No_body
6 hours ago












5 Answers
5






active

oldest

votes


















6














Today's edition of Over Engineered with Numpy



Though admittedly very little obvious Numpy



i, rows = pd.factorize([*zip(df.ID, df.col1.replace('None'))])
k, cols = pd.factorize(df.groupby(i).cumcount())

dleft = pd.DataFrame(dict(zip(['ID', 'col1'], zip(*rows))))
drigt = pd.DataFrame(index=dleft.index, columns=np.arange(len(cols)) + 2).add_prefix('col')
drigt.values[i, k] = df.col2.values

dleft.join(drigt)

ID col1 col2 col3
0 1 Abc street 2017-07-27 2017-08-17
1 1 Def street 2018-07-15 2018-08-13
2 2 fbg street 2018-01-07 2018-08-12
3 2 trf street 2019-01-15 NaN





share|improve this answer






























    5














    Using ffill + pivot_table. This assumes that None follows the proper value, which it appears to from your data.




    u = df.assign(col1=df.col1.replace('None'))
    g = ['ID', 'col1']
    idx = u.groupby(g).cumcount()

    (u.assign(idx=idx)
    .pivot_table(index=g, columns='idx', values='col2', aggfunc='first')
    .reset_index())




    idx ID col1 0 1
    0 1 Abc street 2017-07-27 2017-08-17
    1 1 Def street 2018-07-15 2018-08-13
    2 2 fbg street 2018-01-07 2018-08-12
    3 2 trf street 2019-01-15 NaN





    share|improve this answer
































      5














      I am using cumcount with merge



      df1=df.loc[df.col1.ne('None'),:].copy()
      df2=df.loc[df.col1.eq('None'),:].copy()
      df1['Key']=df1.groupby('ID').cumcount()
      df2['Key']=df2.groupby('ID').cumcount()
      df1.merge(df2.drop('col1',1),on=['ID','Key'],how='left')
      Out[816]:
      ID col1 col2_x Key col2_y
      0 1 Abcstreet 2017-07-27 0 2017-08-17
      1 1 Defstreet 2018-07-15 1 2018-08-13
      2 2 fbgstreet 2018-01-07 0 2018-08-12
      3 2 trfstreet 2019-01-15 1 NaN





      share|improve this answer























      • It's working fine but failing for this condition. When i have ab street 2018-01-07 , bc street 2018-02-08 , None 2018-08-12 , rf street 2019-01-15 . The output coming as ab street 2018-01-07 , 2018-08-12 , bc street 2018-02-08 , rf street 2019-01-15 ... Instead of ab street 2018-01-07 , bc street 2018-02-08 , 2018-08-12 , rf street 2019-01-15 .

        – No_body
        5 hours ago


















      3














      Try:



      filters = df['col1'].isna()
      s = df.loc[filters, 'col2'].copy()
      df = df[~filters]
      df['col3'] = s.values



      Edit: as you mentioned, the filter you want is 'None', not None, then:



      filters = df['col1'].eq('None')





      share|improve this answer























      • Maybe you need to check some edge situation , I thought the ID is the key to assign , if you only assign it by value , ID may mismatch

        – WeNYoBen
        6 hours ago











      • Agree with @WeNYoBen, its dangerous just to paste the values as a column

        – Erfan
        6 hours ago











      • That's true. But the ID column given is not unique-value, so assign on that would fail (I think). Or I need to do a groupby.

        – Quang Hoang
        6 hours ago



















      0














      Yet another attempt:



      f=df['col1']=='None'
      c3=df.loc[f].col2.reset_index(drop=True)
      df=df[~f]
      df2=pd.concat([df.reset_index(drop=True),c3], axis=1, ignore_index=True)
      df2.columns=['ID', 'col1', 'col2', 'col3']



       ID col1 col2 col3
      0 1 Abc street 2017-07-27 2017-08-17
      1 1 Def street 2018-07-15 2018-08-13
      2 2 fbg street 2018-01-07 2018-08-12
      3 2 trf street 2019-01-15 NaN





      share|improve this answer























        Your Answer






        StackExchange.ifUsing("editor", function ()
        StackExchange.using("externalEditor", function ()
        StackExchange.using("snippets", function ()
        StackExchange.snippets.init();
        );
        );
        , "code-snippets");

        StackExchange.ready(function()
        var channelOptions =
        tags: "".split(" "),
        id: "1"
        ;
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function()
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled)
        StackExchange.using("snippets", function()
        createEditor();
        );

        else
        createEditor();

        );

        function createEditor()
        StackExchange.prepareEditor(
        heartbeatType: 'answer',
        autoActivateHeartbeat: false,
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader:
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        ,
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        );



        );













        draft saved

        draft discarded


















        StackExchange.ready(
        function ()
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f56117560%2ffilter-a-data-frame-and-add-a-new-column-according-to-the-given-condition%23new-answer', 'question_page');

        );

        Post as a guest















        Required, but never shown

























        5 Answers
        5






        active

        oldest

        votes








        5 Answers
        5






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes









        6














        Today's edition of Over Engineered with Numpy



        Though admittedly very little obvious Numpy



        i, rows = pd.factorize([*zip(df.ID, df.col1.replace('None'))])
        k, cols = pd.factorize(df.groupby(i).cumcount())

        dleft = pd.DataFrame(dict(zip(['ID', 'col1'], zip(*rows))))
        drigt = pd.DataFrame(index=dleft.index, columns=np.arange(len(cols)) + 2).add_prefix('col')
        drigt.values[i, k] = df.col2.values

        dleft.join(drigt)

        ID col1 col2 col3
        0 1 Abc street 2017-07-27 2017-08-17
        1 1 Def street 2018-07-15 2018-08-13
        2 2 fbg street 2018-01-07 2018-08-12
        3 2 trf street 2019-01-15 NaN





        share|improve this answer



























          6














          Today's edition of Over Engineered with Numpy



          Though admittedly very little obvious Numpy



          i, rows = pd.factorize([*zip(df.ID, df.col1.replace('None'))])
          k, cols = pd.factorize(df.groupby(i).cumcount())

          dleft = pd.DataFrame(dict(zip(['ID', 'col1'], zip(*rows))))
          drigt = pd.DataFrame(index=dleft.index, columns=np.arange(len(cols)) + 2).add_prefix('col')
          drigt.values[i, k] = df.col2.values

          dleft.join(drigt)

          ID col1 col2 col3
          0 1 Abc street 2017-07-27 2017-08-17
          1 1 Def street 2018-07-15 2018-08-13
          2 2 fbg street 2018-01-07 2018-08-12
          3 2 trf street 2019-01-15 NaN





          share|improve this answer

























            6












            6








            6







            Today's edition of Over Engineered with Numpy



            Though admittedly very little obvious Numpy



            i, rows = pd.factorize([*zip(df.ID, df.col1.replace('None'))])
            k, cols = pd.factorize(df.groupby(i).cumcount())

            dleft = pd.DataFrame(dict(zip(['ID', 'col1'], zip(*rows))))
            drigt = pd.DataFrame(index=dleft.index, columns=np.arange(len(cols)) + 2).add_prefix('col')
            drigt.values[i, k] = df.col2.values

            dleft.join(drigt)

            ID col1 col2 col3
            0 1 Abc street 2017-07-27 2017-08-17
            1 1 Def street 2018-07-15 2018-08-13
            2 2 fbg street 2018-01-07 2018-08-12
            3 2 trf street 2019-01-15 NaN





            share|improve this answer













            Today's edition of Over Engineered with Numpy



            Though admittedly very little obvious Numpy



            i, rows = pd.factorize([*zip(df.ID, df.col1.replace('None'))])
            k, cols = pd.factorize(df.groupby(i).cumcount())

            dleft = pd.DataFrame(dict(zip(['ID', 'col1'], zip(*rows))))
            drigt = pd.DataFrame(index=dleft.index, columns=np.arange(len(cols)) + 2).add_prefix('col')
            drigt.values[i, k] = df.col2.values

            dleft.join(drigt)

            ID col1 col2 col3
            0 1 Abc street 2017-07-27 2017-08-17
            1 1 Def street 2018-07-15 2018-08-13
            2 2 fbg street 2018-01-07 2018-08-12
            3 2 trf street 2019-01-15 NaN






            share|improve this answer












            share|improve this answer



            share|improve this answer










            answered 6 hours ago









            piRSquaredpiRSquared

            163k25166313




            163k25166313























                5














                Using ffill + pivot_table. This assumes that None follows the proper value, which it appears to from your data.




                u = df.assign(col1=df.col1.replace('None'))
                g = ['ID', 'col1']
                idx = u.groupby(g).cumcount()

                (u.assign(idx=idx)
                .pivot_table(index=g, columns='idx', values='col2', aggfunc='first')
                .reset_index())




                idx ID col1 0 1
                0 1 Abc street 2017-07-27 2017-08-17
                1 1 Def street 2018-07-15 2018-08-13
                2 2 fbg street 2018-01-07 2018-08-12
                3 2 trf street 2019-01-15 NaN





                share|improve this answer





























                  5














                  Using ffill + pivot_table. This assumes that None follows the proper value, which it appears to from your data.




                  u = df.assign(col1=df.col1.replace('None'))
                  g = ['ID', 'col1']
                  idx = u.groupby(g).cumcount()

                  (u.assign(idx=idx)
                  .pivot_table(index=g, columns='idx', values='col2', aggfunc='first')
                  .reset_index())




                  idx ID col1 0 1
                  0 1 Abc street 2017-07-27 2017-08-17
                  1 1 Def street 2018-07-15 2018-08-13
                  2 2 fbg street 2018-01-07 2018-08-12
                  3 2 trf street 2019-01-15 NaN





                  share|improve this answer



























                    5












                    5








                    5







                    Using ffill + pivot_table. This assumes that None follows the proper value, which it appears to from your data.




                    u = df.assign(col1=df.col1.replace('None'))
                    g = ['ID', 'col1']
                    idx = u.groupby(g).cumcount()

                    (u.assign(idx=idx)
                    .pivot_table(index=g, columns='idx', values='col2', aggfunc='first')
                    .reset_index())




                    idx ID col1 0 1
                    0 1 Abc street 2017-07-27 2017-08-17
                    1 1 Def street 2018-07-15 2018-08-13
                    2 2 fbg street 2018-01-07 2018-08-12
                    3 2 trf street 2019-01-15 NaN





                    share|improve this answer















                    Using ffill + pivot_table. This assumes that None follows the proper value, which it appears to from your data.




                    u = df.assign(col1=df.col1.replace('None'))
                    g = ['ID', 'col1']
                    idx = u.groupby(g).cumcount()

                    (u.assign(idx=idx)
                    .pivot_table(index=g, columns='idx', values='col2', aggfunc='first')
                    .reset_index())




                    idx ID col1 0 1
                    0 1 Abc street 2017-07-27 2017-08-17
                    1 1 Def street 2018-07-15 2018-08-13
                    2 2 fbg street 2018-01-07 2018-08-12
                    3 2 trf street 2019-01-15 NaN






                    share|improve this answer














                    share|improve this answer



                    share|improve this answer








                    edited 6 hours ago

























                    answered 6 hours ago









                    user3483203user3483203

                    33.3k83157




                    33.3k83157





















                        5














                        I am using cumcount with merge



                        df1=df.loc[df.col1.ne('None'),:].copy()
                        df2=df.loc[df.col1.eq('None'),:].copy()
                        df1['Key']=df1.groupby('ID').cumcount()
                        df2['Key']=df2.groupby('ID').cumcount()
                        df1.merge(df2.drop('col1',1),on=['ID','Key'],how='left')
                        Out[816]:
                        ID col1 col2_x Key col2_y
                        0 1 Abcstreet 2017-07-27 0 2017-08-17
                        1 1 Defstreet 2018-07-15 1 2018-08-13
                        2 2 fbgstreet 2018-01-07 0 2018-08-12
                        3 2 trfstreet 2019-01-15 1 NaN





                        share|improve this answer























                        • It's working fine but failing for this condition. When i have ab street 2018-01-07 , bc street 2018-02-08 , None 2018-08-12 , rf street 2019-01-15 . The output coming as ab street 2018-01-07 , 2018-08-12 , bc street 2018-02-08 , rf street 2019-01-15 ... Instead of ab street 2018-01-07 , bc street 2018-02-08 , 2018-08-12 , rf street 2019-01-15 .

                          – No_body
                          5 hours ago















                        5














                        I am using cumcount with merge



                        df1=df.loc[df.col1.ne('None'),:].copy()
                        df2=df.loc[df.col1.eq('None'),:].copy()
                        df1['Key']=df1.groupby('ID').cumcount()
                        df2['Key']=df2.groupby('ID').cumcount()
                        df1.merge(df2.drop('col1',1),on=['ID','Key'],how='left')
                        Out[816]:
                        ID col1 col2_x Key col2_y
                        0 1 Abcstreet 2017-07-27 0 2017-08-17
                        1 1 Defstreet 2018-07-15 1 2018-08-13
                        2 2 fbgstreet 2018-01-07 0 2018-08-12
                        3 2 trfstreet 2019-01-15 1 NaN





                        share|improve this answer























                        • It's working fine but failing for this condition. When i have ab street 2018-01-07 , bc street 2018-02-08 , None 2018-08-12 , rf street 2019-01-15 . The output coming as ab street 2018-01-07 , 2018-08-12 , bc street 2018-02-08 , rf street 2019-01-15 ... Instead of ab street 2018-01-07 , bc street 2018-02-08 , 2018-08-12 , rf street 2019-01-15 .

                          – No_body
                          5 hours ago













                        5












                        5








                        5







                        I am using cumcount with merge



                        df1=df.loc[df.col1.ne('None'),:].copy()
                        df2=df.loc[df.col1.eq('None'),:].copy()
                        df1['Key']=df1.groupby('ID').cumcount()
                        df2['Key']=df2.groupby('ID').cumcount()
                        df1.merge(df2.drop('col1',1),on=['ID','Key'],how='left')
                        Out[816]:
                        ID col1 col2_x Key col2_y
                        0 1 Abcstreet 2017-07-27 0 2017-08-17
                        1 1 Defstreet 2018-07-15 1 2018-08-13
                        2 2 fbgstreet 2018-01-07 0 2018-08-12
                        3 2 trfstreet 2019-01-15 1 NaN





                        share|improve this answer













                        I am using cumcount with merge



                        df1=df.loc[df.col1.ne('None'),:].copy()
                        df2=df.loc[df.col1.eq('None'),:].copy()
                        df1['Key']=df1.groupby('ID').cumcount()
                        df2['Key']=df2.groupby('ID').cumcount()
                        df1.merge(df2.drop('col1',1),on=['ID','Key'],how='left')
                        Out[816]:
                        ID col1 col2_x Key col2_y
                        0 1 Abcstreet 2017-07-27 0 2017-08-17
                        1 1 Defstreet 2018-07-15 1 2018-08-13
                        2 2 fbgstreet 2018-01-07 0 2018-08-12
                        3 2 trfstreet 2019-01-15 1 NaN






                        share|improve this answer












                        share|improve this answer



                        share|improve this answer










                        answered 6 hours ago









                        WeNYoBenWeNYoBen

                        133k84373




                        133k84373












                        • It's working fine but failing for this condition. When i have ab street 2018-01-07 , bc street 2018-02-08 , None 2018-08-12 , rf street 2019-01-15 . The output coming as ab street 2018-01-07 , 2018-08-12 , bc street 2018-02-08 , rf street 2019-01-15 ... Instead of ab street 2018-01-07 , bc street 2018-02-08 , 2018-08-12 , rf street 2019-01-15 .

                          – No_body
                          5 hours ago

















                        • It's working fine but failing for this condition. When i have ab street 2018-01-07 , bc street 2018-02-08 , None 2018-08-12 , rf street 2019-01-15 . The output coming as ab street 2018-01-07 , 2018-08-12 , bc street 2018-02-08 , rf street 2019-01-15 ... Instead of ab street 2018-01-07 , bc street 2018-02-08 , 2018-08-12 , rf street 2019-01-15 .

                          – No_body
                          5 hours ago
















                        It's working fine but failing for this condition. When i have ab street 2018-01-07 , bc street 2018-02-08 , None 2018-08-12 , rf street 2019-01-15 . The output coming as ab street 2018-01-07 , 2018-08-12 , bc street 2018-02-08 , rf street 2019-01-15 ... Instead of ab street 2018-01-07 , bc street 2018-02-08 , 2018-08-12 , rf street 2019-01-15 .

                        – No_body
                        5 hours ago





                        It's working fine but failing for this condition. When i have ab street 2018-01-07 , bc street 2018-02-08 , None 2018-08-12 , rf street 2019-01-15 . The output coming as ab street 2018-01-07 , 2018-08-12 , bc street 2018-02-08 , rf street 2019-01-15 ... Instead of ab street 2018-01-07 , bc street 2018-02-08 , 2018-08-12 , rf street 2019-01-15 .

                        – No_body
                        5 hours ago











                        3














                        Try:



                        filters = df['col1'].isna()
                        s = df.loc[filters, 'col2'].copy()
                        df = df[~filters]
                        df['col3'] = s.values



                        Edit: as you mentioned, the filter you want is 'None', not None, then:



                        filters = df['col1'].eq('None')





                        share|improve this answer























                        • Maybe you need to check some edge situation , I thought the ID is the key to assign , if you only assign it by value , ID may mismatch

                          – WeNYoBen
                          6 hours ago











                        • Agree with @WeNYoBen, its dangerous just to paste the values as a column

                          – Erfan
                          6 hours ago











                        • That's true. But the ID column given is not unique-value, so assign on that would fail (I think). Or I need to do a groupby.

                          – Quang Hoang
                          6 hours ago
















                        3














                        Try:



                        filters = df['col1'].isna()
                        s = df.loc[filters, 'col2'].copy()
                        df = df[~filters]
                        df['col3'] = s.values



                        Edit: as you mentioned, the filter you want is 'None', not None, then:



                        filters = df['col1'].eq('None')





                        share|improve this answer























                        • Maybe you need to check some edge situation , I thought the ID is the key to assign , if you only assign it by value , ID may mismatch

                          – WeNYoBen
                          6 hours ago











                        • Agree with @WeNYoBen, its dangerous just to paste the values as a column

                          – Erfan
                          6 hours ago











                        • That's true. But the ID column given is not unique-value, so assign on that would fail (I think). Or I need to do a groupby.

                          – Quang Hoang
                          6 hours ago














                        3












                        3








                        3







                        Try:



                        filters = df['col1'].isna()
                        s = df.loc[filters, 'col2'].copy()
                        df = df[~filters]
                        df['col3'] = s.values



                        Edit: as you mentioned, the filter you want is 'None', not None, then:



                        filters = df['col1'].eq('None')





                        share|improve this answer













                        Try:



                        filters = df['col1'].isna()
                        s = df.loc[filters, 'col2'].copy()
                        df = df[~filters]
                        df['col3'] = s.values



                        Edit: as you mentioned, the filter you want is 'None', not None, then:



                        filters = df['col1'].eq('None')






                        share|improve this answer












                        share|improve this answer



                        share|improve this answer










                        answered 6 hours ago









                        Quang HoangQuang Hoang

                        5,96411021




                        5,96411021












                        • Maybe you need to check some edge situation , I thought the ID is the key to assign , if you only assign it by value , ID may mismatch

                          – WeNYoBen
                          6 hours ago











                        • Agree with @WeNYoBen, its dangerous just to paste the values as a column

                          – Erfan
                          6 hours ago











                        • That's true. But the ID column given is not unique-value, so assign on that would fail (I think). Or I need to do a groupby.

                          – Quang Hoang
                          6 hours ago


















                        • Maybe you need to check some edge situation , I thought the ID is the key to assign , if you only assign it by value , ID may mismatch

                          – WeNYoBen
                          6 hours ago











                        • Agree with @WeNYoBen, its dangerous just to paste the values as a column

                          – Erfan
                          6 hours ago











                        • That's true. But the ID column given is not unique-value, so assign on that would fail (I think). Or I need to do a groupby.

                          – Quang Hoang
                          6 hours ago

















                        Maybe you need to check some edge situation , I thought the ID is the key to assign , if you only assign it by value , ID may mismatch

                        – WeNYoBen
                        6 hours ago





                        Maybe you need to check some edge situation , I thought the ID is the key to assign , if you only assign it by value , ID may mismatch

                        – WeNYoBen
                        6 hours ago













                        Agree with @WeNYoBen, its dangerous just to paste the values as a column

                        – Erfan
                        6 hours ago





                        Agree with @WeNYoBen, its dangerous just to paste the values as a column

                        – Erfan
                        6 hours ago













                        That's true. But the ID column given is not unique-value, so assign on that would fail (I think). Or I need to do a groupby.

                        – Quang Hoang
                        6 hours ago






                        That's true. But the ID column given is not unique-value, so assign on that would fail (I think). Or I need to do a groupby.

                        – Quang Hoang
                        6 hours ago












                        0














                        Yet another attempt:



                        f=df['col1']=='None'
                        c3=df.loc[f].col2.reset_index(drop=True)
                        df=df[~f]
                        df2=pd.concat([df.reset_index(drop=True),c3], axis=1, ignore_index=True)
                        df2.columns=['ID', 'col1', 'col2', 'col3']



                         ID col1 col2 col3
                        0 1 Abc street 2017-07-27 2017-08-17
                        1 1 Def street 2018-07-15 2018-08-13
                        2 2 fbg street 2018-01-07 2018-08-12
                        3 2 trf street 2019-01-15 NaN





                        share|improve this answer



























                          0














                          Yet another attempt:



                          f=df['col1']=='None'
                          c3=df.loc[f].col2.reset_index(drop=True)
                          df=df[~f]
                          df2=pd.concat([df.reset_index(drop=True),c3], axis=1, ignore_index=True)
                          df2.columns=['ID', 'col1', 'col2', 'col3']



                           ID col1 col2 col3
                          0 1 Abc street 2017-07-27 2017-08-17
                          1 1 Def street 2018-07-15 2018-08-13
                          2 2 fbg street 2018-01-07 2018-08-12
                          3 2 trf street 2019-01-15 NaN





                          share|improve this answer

























                            0












                            0








                            0







                            Yet another attempt:



                            f=df['col1']=='None'
                            c3=df.loc[f].col2.reset_index(drop=True)
                            df=df[~f]
                            df2=pd.concat([df.reset_index(drop=True),c3], axis=1, ignore_index=True)
                            df2.columns=['ID', 'col1', 'col2', 'col3']



                             ID col1 col2 col3
                            0 1 Abc street 2017-07-27 2017-08-17
                            1 1 Def street 2018-07-15 2018-08-13
                            2 2 fbg street 2018-01-07 2018-08-12
                            3 2 trf street 2019-01-15 NaN





                            share|improve this answer













                            Yet another attempt:



                            f=df['col1']=='None'
                            c3=df.loc[f].col2.reset_index(drop=True)
                            df=df[~f]
                            df2=pd.concat([df.reset_index(drop=True),c3], axis=1, ignore_index=True)
                            df2.columns=['ID', 'col1', 'col2', 'col3']



                             ID col1 col2 col3
                            0 1 Abc street 2017-07-27 2017-08-17
                            1 1 Def street 2018-07-15 2018-08-13
                            2 2 fbg street 2018-01-07 2018-08-12
                            3 2 trf street 2019-01-15 NaN






                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered 5 hours ago









                            prostiprosti

                            6,86913241




                            6,86913241



























                                draft saved

                                draft discarded
















































                                Thanks for contributing an answer to Stack Overflow!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid


                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.

                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function ()
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f56117560%2ffilter-a-data-frame-and-add-a-new-column-according-to-the-given-condition%23new-answer', 'question_page');

                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Log på Navigationsmenu

                                Creating second map without labels using QGIS?How to lock map labels for inset map in Print Composer?How to Force the Showing of Labels of a Vector File in QGISQGIS Valmiera, Labels only show for part of polygonsRemoving duplicate point labels in QGISLabeling every feature using QGIS?Show labels for point features outside map canvasAbbreviate Road Labels in QGIS only when requiredExporting map from composer in QGIS - text labels have moved in output?How to make sure labels in qgis turn up in layout map?Writing label expression with ArcMap and If then Statement?

                                Nuuk Indholdsfortegnelse Etyomologi | Historie | Geografi | Transport og infrastruktur | Politik og administration | Uddannelsesinstitutioner | Kultur | Venskabsbyer | Noter | Eksterne henvisninger | Se også | Navigationsmenuwww.sermersooq.gl64°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.75064°10′N 51°45′V / 64.167°N 51.750°V / 64.167; -51.750DMI - KlimanormalerSalmonsen, s. 850Grønlands Naturinstitut undersøger rensdyr i Akia og Maniitsoq foråret 2008Grønlands NaturinstitutNy vej til Qinngorput indviet i dagAntallet af biler i Nuuk må begrænsesNy taxacentral mødt med demonstrationKøreplan. Rute 1, 2 og 3SnescootersporNuukNord er for storSkoler i Kommuneqarfik SermersooqAtuarfik Samuel KleinschmidtKangillinguit AtuarfiatNuussuup AtuarfiaNuuk Internationale FriskoleIlinniarfissuaq, Grønlands SeminariumLedelseÅrsberetning for 2008Kunst og arkitekturÅrsberetning for 2008Julie om naturenNuuk KunstmuseumSilamiutGrønlands Nationalmuseum og ArkivStatistisk ÅrbogGrønlands LandsbibliotekStore koncerter på stribeVandhund nummer 1.000.000Kommuneqarfik Sermersooq – MalikForsidenVenskabsbyerLyngby-Taarbæk i GrønlandArctic Business NetworkWinter Cities 2008 i NuukDagligt opdaterede satellitbilleder fra NuukområdetKommuneqarfik Sermersooqs hjemmesideTurist i NuukGrønlands Statistiks databankGrønlands Hjemmestyres valgresultaterrrWorldCat124325457671310-5