Show solution to recurrence is never a squarePrimes of the form 1..1Integers divide several solutions to Greatest Common Divisor equationProving a solution to a double recurrence is exhaustiveNumbers that are clearly NOT a SquareProcedural question regarding number of steps in Euclidean algorithmLimit of sequence in which each term is the average of its preceding k terms.Geometric represntation of terms for reccurence sequence with $f(x)=frac-12 x+3$?How many digits occur in the $100^th$ term of the following recurrence?Convergence of a linear recurrence equationDerivative of integral for non-negative part functions

Are there any sonatas with only two sections?

Why are solar panels kept tilted?

Formal Definition of Dot Product

Did galley captains put corks in the mouths of slave rowers to keep them quiet?

Alias for root of a polynomial

Biology of a Firestarter

Do we have C++20 ranges library in GCC 9?

the grammar about `adv adv` as 'too quickly'

Is there an academic word that means "to split hairs over"?

Why didn't the Avengers use this object earlier?

Adding labels and comments to a matrix

Can multiple outlets be directly attached to a single breaker?

Use of さ as a filler

Single word that parallels "Recent" when discussing the near future

Why did the metro bus stop at each railway crossing, despite no warning indicating a train was coming?

How to cope with regret and shame about not fully utilizing opportunities during PhD?

How might a landlocked lake become a complete ecosystem?

Offered a new position but unknown about salary?

Given 0s on Assignments with suspected and dismissed cheating?

How do I identify the partitions of my hard drive in order to then shred them all?

Is 12 minutes connection in Bristol Temple Meads long enough?

A case where Bishop for knight isn't a good trade

Will a coyote attack my dog on a leash while I'm on a hiking trail?

Promotion comes with unexpected 24/7/365 on-call



Show solution to recurrence is never a square


Primes of the form 1..1Integers divide several solutions to Greatest Common Divisor equationProving a solution to a double recurrence is exhaustiveNumbers that are clearly NOT a SquareProcedural question regarding number of steps in Euclidean algorithmLimit of sequence in which each term is the average of its preceding k terms.Geometric represntation of terms for reccurence sequence with $f(x)=frac-12 x+3$?How many digits occur in the $100^th$ term of the following recurrence?Convergence of a linear recurrence equationDerivative of integral for non-negative part functions













3












$begingroup$


Cute problem I saw on quora:



If
$u_1 = 1,
u_n+1 = n+sum_k=1^n u_k^2
$
,
show that,
for $n ge 2$,
$u_n$ is never a square.



$
n=1: u_2 = 1+1 = 2\
n=2: u_3 = 2+1+4 = 7\
n=3: u_4 = 3+1+4+49 = 57\
$



And, as usual,
I have a generalization:



If
$a ge 1, b ge 0, u_1 = 1,
u_n+1 = an+b+sum_k=1^n u_k^2,
a, b in mathbbZ,
$
then
for $n ge 3$,
$u_n$ is never a square.



Note:
My solutions to these
do not involve
any explicit expressions
for the $u_n$.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    I see the answer from considering modulo $5$. I wonder if it could also be proved that $u_n$ is never a square because $u_n-1<sqrtu_n<u_n-1+1$
    $endgroup$
    – J. W. Tanner
    3 hours ago















3












$begingroup$


Cute problem I saw on quora:



If
$u_1 = 1,
u_n+1 = n+sum_k=1^n u_k^2
$
,
show that,
for $n ge 2$,
$u_n$ is never a square.



$
n=1: u_2 = 1+1 = 2\
n=2: u_3 = 2+1+4 = 7\
n=3: u_4 = 3+1+4+49 = 57\
$



And, as usual,
I have a generalization:



If
$a ge 1, b ge 0, u_1 = 1,
u_n+1 = an+b+sum_k=1^n u_k^2,
a, b in mathbbZ,
$
then
for $n ge 3$,
$u_n$ is never a square.



Note:
My solutions to these
do not involve
any explicit expressions
for the $u_n$.










share|cite|improve this question









$endgroup$







  • 1




    $begingroup$
    I see the answer from considering modulo $5$. I wonder if it could also be proved that $u_n$ is never a square because $u_n-1<sqrtu_n<u_n-1+1$
    $endgroup$
    – J. W. Tanner
    3 hours ago













3












3








3





$begingroup$


Cute problem I saw on quora:



If
$u_1 = 1,
u_n+1 = n+sum_k=1^n u_k^2
$
,
show that,
for $n ge 2$,
$u_n$ is never a square.



$
n=1: u_2 = 1+1 = 2\
n=2: u_3 = 2+1+4 = 7\
n=3: u_4 = 3+1+4+49 = 57\
$



And, as usual,
I have a generalization:



If
$a ge 1, b ge 0, u_1 = 1,
u_n+1 = an+b+sum_k=1^n u_k^2,
a, b in mathbbZ,
$
then
for $n ge 3$,
$u_n$ is never a square.



Note:
My solutions to these
do not involve
any explicit expressions
for the $u_n$.










share|cite|improve this question









$endgroup$




Cute problem I saw on quora:



If
$u_1 = 1,
u_n+1 = n+sum_k=1^n u_k^2
$
,
show that,
for $n ge 2$,
$u_n$ is never a square.



$
n=1: u_2 = 1+1 = 2\
n=2: u_3 = 2+1+4 = 7\
n=3: u_4 = 3+1+4+49 = 57\
$



And, as usual,
I have a generalization:



If
$a ge 1, b ge 0, u_1 = 1,
u_n+1 = an+b+sum_k=1^n u_k^2,
a, b in mathbbZ,
$
then
for $n ge 3$,
$u_n$ is never a square.



Note:
My solutions to these
do not involve
any explicit expressions
for the $u_n$.







elementary-number-theory recurrence-relations square-numbers






share|cite|improve this question













share|cite|improve this question











share|cite|improve this question




share|cite|improve this question










asked 3 hours ago









marty cohenmarty cohen

76.8k549130




76.8k549130







  • 1




    $begingroup$
    I see the answer from considering modulo $5$. I wonder if it could also be proved that $u_n$ is never a square because $u_n-1<sqrtu_n<u_n-1+1$
    $endgroup$
    – J. W. Tanner
    3 hours ago












  • 1




    $begingroup$
    I see the answer from considering modulo $5$. I wonder if it could also be proved that $u_n$ is never a square because $u_n-1<sqrtu_n<u_n-1+1$
    $endgroup$
    – J. W. Tanner
    3 hours ago







1




1




$begingroup$
I see the answer from considering modulo $5$. I wonder if it could also be proved that $u_n$ is never a square because $u_n-1<sqrtu_n<u_n-1+1$
$endgroup$
– J. W. Tanner
3 hours ago




$begingroup$
I see the answer from considering modulo $5$. I wonder if it could also be proved that $u_n$ is never a square because $u_n-1<sqrtu_n<u_n-1+1$
$endgroup$
– J. W. Tanner
3 hours ago










2 Answers
2






active

oldest

votes


















4












$begingroup$

The problem, indeed, is very cute.



We just need to check the condition $textrmmod 5$:
$$u_1 equiv 1 textrm mod 5$$
$$u_2 equiv 2 textrm mod 5$$
$$u_3 equiv 2 textrm mod 5$$
etc.



Therefore, one can show by induction that for any $n in mathbbN$:
$$u_n+1 equiv left[ n+1+sum_j=2^n (-1) right] textrm mod 5 equiv 2 textrm mod 5.$$
The latter is never true for squares, since squares are equal to either 1 or 4 mod 5.



To prove the generalization, we use the recurrence relation of type
$$u_n+1 = u_n^2+u_n+a.$$
Notice that $u_n+1>u_n^2$ since $a>0$.



Therefore, if $u_n+1$ is a perfect square, then $ageq u_n+1 > u_n$.



But $a>u_n$ is impossible since for any $n geq 3$:
$$u_n = u_n-1^2+u_n-1+a >a.$$
This gives us a contradiction, so $u_n$ is never a perfect square for any
$ngeq 3$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    although, I need to think a bit more about the generalization
    $endgroup$
    – Jane
    3 hours ago










  • $begingroup$
    That is very nice, and it is completely different than my solution, so I will accept it. Now, how about the generalization?
    $endgroup$
    – marty cohen
    3 hours ago










  • $begingroup$
    thank you! i am thinking about the generalization right now.
    $endgroup$
    – Jane
    3 hours ago










  • $begingroup$
    I added the proof for the generalization by editing this post.
    $endgroup$
    – Jane
    2 hours ago


















5












$begingroup$

The recurrence can be rewritten as
begineqnarray*
u_n+1=u_n^2+u_n+1.
endeqnarray*

It is easy to show that
begineqnarray*
u_n^2 < u_n+1 <(u_n+1)^2.
endeqnarray*

Now observe that there is no whole numbers between $u_n$ & $u_n+1$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    This was the idea I expressed in my comment; I just didn't take the time to flesh it out; thank you for doing so
    $endgroup$
    – J. W. Tanner
    2 hours ago











Your Answer








StackExchange.ready(function()
var channelOptions =
tags: "".split(" "),
id: "69"
;
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function()
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled)
StackExchange.using("snippets", function()
createEditor();
);

else
createEditor();

);

function createEditor()
StackExchange.prepareEditor(
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader:
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
,
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
);



);













draft saved

draft discarded


















StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3225094%2fshow-solution-to-recurrence-is-never-a-square%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









4












$begingroup$

The problem, indeed, is very cute.



We just need to check the condition $textrmmod 5$:
$$u_1 equiv 1 textrm mod 5$$
$$u_2 equiv 2 textrm mod 5$$
$$u_3 equiv 2 textrm mod 5$$
etc.



Therefore, one can show by induction that for any $n in mathbbN$:
$$u_n+1 equiv left[ n+1+sum_j=2^n (-1) right] textrm mod 5 equiv 2 textrm mod 5.$$
The latter is never true for squares, since squares are equal to either 1 or 4 mod 5.



To prove the generalization, we use the recurrence relation of type
$$u_n+1 = u_n^2+u_n+a.$$
Notice that $u_n+1>u_n^2$ since $a>0$.



Therefore, if $u_n+1$ is a perfect square, then $ageq u_n+1 > u_n$.



But $a>u_n$ is impossible since for any $n geq 3$:
$$u_n = u_n-1^2+u_n-1+a >a.$$
This gives us a contradiction, so $u_n$ is never a perfect square for any
$ngeq 3$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    although, I need to think a bit more about the generalization
    $endgroup$
    – Jane
    3 hours ago










  • $begingroup$
    That is very nice, and it is completely different than my solution, so I will accept it. Now, how about the generalization?
    $endgroup$
    – marty cohen
    3 hours ago










  • $begingroup$
    thank you! i am thinking about the generalization right now.
    $endgroup$
    – Jane
    3 hours ago










  • $begingroup$
    I added the proof for the generalization by editing this post.
    $endgroup$
    – Jane
    2 hours ago















4












$begingroup$

The problem, indeed, is very cute.



We just need to check the condition $textrmmod 5$:
$$u_1 equiv 1 textrm mod 5$$
$$u_2 equiv 2 textrm mod 5$$
$$u_3 equiv 2 textrm mod 5$$
etc.



Therefore, one can show by induction that for any $n in mathbbN$:
$$u_n+1 equiv left[ n+1+sum_j=2^n (-1) right] textrm mod 5 equiv 2 textrm mod 5.$$
The latter is never true for squares, since squares are equal to either 1 or 4 mod 5.



To prove the generalization, we use the recurrence relation of type
$$u_n+1 = u_n^2+u_n+a.$$
Notice that $u_n+1>u_n^2$ since $a>0$.



Therefore, if $u_n+1$ is a perfect square, then $ageq u_n+1 > u_n$.



But $a>u_n$ is impossible since for any $n geq 3$:
$$u_n = u_n-1^2+u_n-1+a >a.$$
This gives us a contradiction, so $u_n$ is never a perfect square for any
$ngeq 3$.






share|cite|improve this answer











$endgroup$












  • $begingroup$
    although, I need to think a bit more about the generalization
    $endgroup$
    – Jane
    3 hours ago










  • $begingroup$
    That is very nice, and it is completely different than my solution, so I will accept it. Now, how about the generalization?
    $endgroup$
    – marty cohen
    3 hours ago










  • $begingroup$
    thank you! i am thinking about the generalization right now.
    $endgroup$
    – Jane
    3 hours ago










  • $begingroup$
    I added the proof for the generalization by editing this post.
    $endgroup$
    – Jane
    2 hours ago













4












4








4





$begingroup$

The problem, indeed, is very cute.



We just need to check the condition $textrmmod 5$:
$$u_1 equiv 1 textrm mod 5$$
$$u_2 equiv 2 textrm mod 5$$
$$u_3 equiv 2 textrm mod 5$$
etc.



Therefore, one can show by induction that for any $n in mathbbN$:
$$u_n+1 equiv left[ n+1+sum_j=2^n (-1) right] textrm mod 5 equiv 2 textrm mod 5.$$
The latter is never true for squares, since squares are equal to either 1 or 4 mod 5.



To prove the generalization, we use the recurrence relation of type
$$u_n+1 = u_n^2+u_n+a.$$
Notice that $u_n+1>u_n^2$ since $a>0$.



Therefore, if $u_n+1$ is a perfect square, then $ageq u_n+1 > u_n$.



But $a>u_n$ is impossible since for any $n geq 3$:
$$u_n = u_n-1^2+u_n-1+a >a.$$
This gives us a contradiction, so $u_n$ is never a perfect square for any
$ngeq 3$.






share|cite|improve this answer











$endgroup$



The problem, indeed, is very cute.



We just need to check the condition $textrmmod 5$:
$$u_1 equiv 1 textrm mod 5$$
$$u_2 equiv 2 textrm mod 5$$
$$u_3 equiv 2 textrm mod 5$$
etc.



Therefore, one can show by induction that for any $n in mathbbN$:
$$u_n+1 equiv left[ n+1+sum_j=2^n (-1) right] textrm mod 5 equiv 2 textrm mod 5.$$
The latter is never true for squares, since squares are equal to either 1 or 4 mod 5.



To prove the generalization, we use the recurrence relation of type
$$u_n+1 = u_n^2+u_n+a.$$
Notice that $u_n+1>u_n^2$ since $a>0$.



Therefore, if $u_n+1$ is a perfect square, then $ageq u_n+1 > u_n$.



But $a>u_n$ is impossible since for any $n geq 3$:
$$u_n = u_n-1^2+u_n-1+a >a.$$
This gives us a contradiction, so $u_n$ is never a perfect square for any
$ngeq 3$.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 2 hours ago

























answered 3 hours ago









JaneJane

1,258313




1,258313











  • $begingroup$
    although, I need to think a bit more about the generalization
    $endgroup$
    – Jane
    3 hours ago










  • $begingroup$
    That is very nice, and it is completely different than my solution, so I will accept it. Now, how about the generalization?
    $endgroup$
    – marty cohen
    3 hours ago










  • $begingroup$
    thank you! i am thinking about the generalization right now.
    $endgroup$
    – Jane
    3 hours ago










  • $begingroup$
    I added the proof for the generalization by editing this post.
    $endgroup$
    – Jane
    2 hours ago
















  • $begingroup$
    although, I need to think a bit more about the generalization
    $endgroup$
    – Jane
    3 hours ago










  • $begingroup$
    That is very nice, and it is completely different than my solution, so I will accept it. Now, how about the generalization?
    $endgroup$
    – marty cohen
    3 hours ago










  • $begingroup$
    thank you! i am thinking about the generalization right now.
    $endgroup$
    – Jane
    3 hours ago










  • $begingroup$
    I added the proof for the generalization by editing this post.
    $endgroup$
    – Jane
    2 hours ago















$begingroup$
although, I need to think a bit more about the generalization
$endgroup$
– Jane
3 hours ago




$begingroup$
although, I need to think a bit more about the generalization
$endgroup$
– Jane
3 hours ago












$begingroup$
That is very nice, and it is completely different than my solution, so I will accept it. Now, how about the generalization?
$endgroup$
– marty cohen
3 hours ago




$begingroup$
That is very nice, and it is completely different than my solution, so I will accept it. Now, how about the generalization?
$endgroup$
– marty cohen
3 hours ago












$begingroup$
thank you! i am thinking about the generalization right now.
$endgroup$
– Jane
3 hours ago




$begingroup$
thank you! i am thinking about the generalization right now.
$endgroup$
– Jane
3 hours ago












$begingroup$
I added the proof for the generalization by editing this post.
$endgroup$
– Jane
2 hours ago




$begingroup$
I added the proof for the generalization by editing this post.
$endgroup$
– Jane
2 hours ago











5












$begingroup$

The recurrence can be rewritten as
begineqnarray*
u_n+1=u_n^2+u_n+1.
endeqnarray*

It is easy to show that
begineqnarray*
u_n^2 < u_n+1 <(u_n+1)^2.
endeqnarray*

Now observe that there is no whole numbers between $u_n$ & $u_n+1$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    This was the idea I expressed in my comment; I just didn't take the time to flesh it out; thank you for doing so
    $endgroup$
    – J. W. Tanner
    2 hours ago















5












$begingroup$

The recurrence can be rewritten as
begineqnarray*
u_n+1=u_n^2+u_n+1.
endeqnarray*

It is easy to show that
begineqnarray*
u_n^2 < u_n+1 <(u_n+1)^2.
endeqnarray*

Now observe that there is no whole numbers between $u_n$ & $u_n+1$.






share|cite|improve this answer









$endgroup$












  • $begingroup$
    This was the idea I expressed in my comment; I just didn't take the time to flesh it out; thank you for doing so
    $endgroup$
    – J. W. Tanner
    2 hours ago













5












5








5





$begingroup$

The recurrence can be rewritten as
begineqnarray*
u_n+1=u_n^2+u_n+1.
endeqnarray*

It is easy to show that
begineqnarray*
u_n^2 < u_n+1 <(u_n+1)^2.
endeqnarray*

Now observe that there is no whole numbers between $u_n$ & $u_n+1$.






share|cite|improve this answer









$endgroup$



The recurrence can be rewritten as
begineqnarray*
u_n+1=u_n^2+u_n+1.
endeqnarray*

It is easy to show that
begineqnarray*
u_n^2 < u_n+1 <(u_n+1)^2.
endeqnarray*

Now observe that there is no whole numbers between $u_n$ & $u_n+1$.







share|cite|improve this answer












share|cite|improve this answer



share|cite|improve this answer










answered 3 hours ago









Donald SplutterwitDonald Splutterwit

23.3k21446




23.3k21446











  • $begingroup$
    This was the idea I expressed in my comment; I just didn't take the time to flesh it out; thank you for doing so
    $endgroup$
    – J. W. Tanner
    2 hours ago
















  • $begingroup$
    This was the idea I expressed in my comment; I just didn't take the time to flesh it out; thank you for doing so
    $endgroup$
    – J. W. Tanner
    2 hours ago















$begingroup$
This was the idea I expressed in my comment; I just didn't take the time to flesh it out; thank you for doing so
$endgroup$
– J. W. Tanner
2 hours ago




$begingroup$
This was the idea I expressed in my comment; I just didn't take the time to flesh it out; thank you for doing so
$endgroup$
– J. W. Tanner
2 hours ago

















draft saved

draft discarded
















































Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid


  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.

Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function ()
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3225094%2fshow-solution-to-recurrence-is-never-a-square%23new-answer', 'question_page');

);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Log på Navigationsmenu

Wonderful Copenhagen (sang) Eksterne henvisninger | NavigationsmenurSide på frankloesser.comWonderful Copenhagen

Detroit Tigers Spis treści Historia | Skład zespołu | Sukcesy | Członkowie Baseball Hall of Fame | Zastrzeżone numery | Przypisy | Menu nawigacyjneEncyclopedia of Detroit - Detroit TigersTigers Stadium, Detroit, MITigers Timeline 1900sDetroit Tigers Team History & EncyclopediaTigers Timeline 1910s1935 World Series1945 World Series1945 World Series1984 World SeriesComerica Park, Detroit, MI2006 World Series2012 World SeriesDetroit Tigers 40-Man RosterDetroit Tigers Coaching StaffTigers Hall of FamersTigers Retired Numberse